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Preface
Mathematical Logic is a necessary preliminary to logical Mathematics. �Math-
ematical Logic� is the name given by Peano to what is also known (after
Venn ) as �Symbolic Logic�; and Symbolic Logic is, in essentials, the Logic
of Aristotle, given new life and power by being dressed up in the wonderful�
almost magical�armour and accoutrements of Algebra. In less than seventy
years, logic, to use an expression of De Morgan's, has so thriven upon sym-
bols and, in consequence, so grown and altered that the ancient logicians would
not recognize it, and many old-fashioned logicians will not recognize it. The
metaphor is not quite correct: Logic has neither grown nor altered, but we now
see more of it and more into it.

The primary signi�cance of a symbolic calculus seems to lie in the econ-
omy of mental e�ort which it brings about, and to this is due the characteristic
power and rapid development of mathematical knowledge. Attempts to treat
the operations of formal logic in an analogous way had been made not infre-
quently by some of the more philosophical mathematicians, such as Leibniz
and Lambert ; but their labors remained little known, and it was Boole
and De Morgan, about the middle of the nineteenth century, to whom a
mathematical�though of course non-quantitative�way of regarding logic was
due. By this, not only was the traditional or Aristotelian doctrine of logic
reformed and completed, but out of it has developed, in course of time, an
instrument which deals in a sure manner with the task of investigating the fun-
damental concepts of mathematics�a task which philosophers have repeatedly
taken in hand, and in which they have as repeatedly failed.

First of all, it is necessary to glance at the growth of symbolism in mathe-
matics; where alone it �rst reached perfection. There have been three stages in
the development of mathematical doctrines: �rst came propositions with par-
ticular numbers, like the one expressed, with signs subsequently invented, by
�2+3 = 5�; then came more general laws holding for all numbers and expressed
by letters, such as

�(a + b)c = ac + bc� ;
lastly came the knowledge of more general laws of functions and the formation
of the conception and expression �function�. The origin of the symbols for par-
ticular whole numbers is very ancient, while the symbols now in use for the
operations and relations of arithmetic mostly date from the sixteenth and sev-
enteenth centuries; and these �constant� symbols together with the letters �rst
used systematically by Viète (1540�1603) and Descartes (1596�1650),
serve, by themselves, to express many propositions. It is not, then, surprising
that Descartes, who was both a mathematician and a philosopher, should
have had the idea of keeping the method of algebra while going beyond the
material of traditional mathematics and embracing the general science of what
thought �nds, so that philosophy should become a kind of Universal Mathemat-
ics. This sort of generalization of the use of symbols for analogous theories is a
characteristic of mathematics, and seems to be a reason lying deeper than the
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erroneous idea, arising from a simple confusion of thought, that algebraical sym-
bols necessarily imply something quantitative, for the antagonism there used to
be and is on the part of those logicians who were not and are not mathemati-
cians, to symbolic logic. This idea of a universal mathematics was cultivated
especially by Gottfried Wilhelm Leibniz (1646�1716).

Though modern logic is really due to Boole and De Morgan, Leibniz
was the �rst to have a really distinct plan of a system of mathematical logic.
That this is so appears from research�much of which is quite recent�into
Leibniz's unpublished work.

The principles of the logic of Leibniz, and consequently of his whole philos-
ophy, reduce to two1: (1) All our ideas are compounded of a very small number of
simple ideas which form the �alphabet of human thoughts�; (2) Complex ideas
proceed from these simple ideas by a uniform and symmetrical combination
which is analogous to arithmetical multiplication. With regard to the �rst prin-
ciple, the number of simple ideas is much greater than Leibniz thought; and,
with regard to the second principle, logic considers three operations�which we
shall meet with in the following book under the names of logical multiplication,
logical addition and negation�instead of only one.

�Characters� were, with Leibniz, any written signs, and �real� characters
were those which�as in the Chinese ideography�represent ideas directly, and
not the words for them. Among real characters, some simply serve to represent
ideas, and some serve for reasoning. Egyptian and Chinese hieroglyphics and the
symbols of astronomers and chemists belong to the �rst category, but Leibniz
declared them to be imperfect, and desired the second category of characters
for what he called his �universal characteristic�.2 It was not in the form of an
algebra that Leibniz �rst conceived his characteristic, probably because he
was then a novice in mathematics, but in the form of a universal language or
script.3 It was in 1676 that he �rst dreamed of a kind of algebra of thought,4 and
it was the algebraic notation which then served as model for the characteristic.5

Leibniz attached so much importance to the invention of proper symbols
that he attributed to this alone the whole of his discoveries in mathematics.6
And, in fact, his in�nitesimal calculus a�ords a most brilliant example of the
importance of, and Leibniz' s skill in devising, a suitable notation.7

Now, it must be remembered that what is usually understood by the name
�symbolic logic�, and which�though not its name�is chie�y due to Boole, is
what Leibniz called a Calculus ratiocinator, and is only a part of the Universal
Characteristic. In symbolic logic Leibniz enunciated the principal properties
of what we now call logical multiplication, addition, negation, identity, class-
inclusion, and the null-class; but the aim of Leibniz's researches was, as he

1 Couturat, La Logique de Leibniz d'après des documents inédits, Paris, 1901, pp. 431�
432, 48.

2Ibid., p. 81.
3Ibid., pp. 51, 78
4Ibid., p. 61.
5Ibid., p. 83.
6Ibid., p. 84.
7Ibid., p. 84�87.
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said, to create �a kind of general system of notation in which all the truths
of reason should be reduced to a calculus. This could be, at the same time,
a kind of universal written language, very di�erent from all those which have
been projected hitherto; for the characters and even the words would direct
the reason, and the errors�excepting those of fact�would only be errors of
calculation. It would be very di�cult to invent this language or characteristic,
but very easy to learn it without any dictionaries�. He �xed the time necessary
to form it: �I think that some chosen men could �nish the matter within �ve
years�; and �nally remarked: �And so I repeat, what I have often said, that a
man who is neither a prophet nor a prince can never undertake any thing more
conducive to the good of the human race and the glory of God�.

In his last letters he remarked: �If I had been less busy, or if I were younger
or helped by well-intentioned young people, I would have hoped to have evolved
a characteristic of this kind�; and: �I have spoken of my general characteristic
to the Marquis de l'Hôpital and others; but they paid no more attention than if
I had been telling them a dream. It would be necessary to support it by some
obvious use; but, for this purpose, it would be necessary to construct a part at
least of my characteristic;�and this is not easy, above all to one situated as I
am�.

Leibniz thus formed projects of both what he called a characteristica uni-
versalis, and what he called a calculus ratiocinator ; it is not hard to see that
these projects are interconnected, since a perfect universal characteristic would
comprise, it seems, a logical calculus. Leibniz did not publish the incomplete
results which he had obtained, and consequently his ideas had no continuators,
with the exception of Lambert and some others, up to the time when Boole,
De Morgan, Schröder, MacColl, and others rediscovered his theorems.
But when the investigations of the principles of mathematics became the chief
task of logical symbolism, the aspect of symbolic logic as a calculus ceased to be
of such importance, as we see in the work of Frege and Russell. Frege's
symbolism, though far better for logical analysis than Boole's or the more
modern Peano's, for instance, is far inferior to Peano's �a symbolism
in which the merits of internationality and power of expressing mathematical
theorems are very satisfactorily attained�in practical convenience. Russell,
especially in his later works, has used the ideas of Frege, many of which he
discovered subsequently to, but independently of, Frege, and modi�ed the
symbolism of Peano as little as possible. Still, the complications thus intro-
duced take away that simple character which seems necessary to a calculus, and
which Boole and others reached by passing over certain distinctions which a
subtler logic has shown us must ultimately be made.

Let us dwell a little longer on the distinction pointed out by Leibniz be-
tween a calculus ratiocinator and a characteristica universalis or lingua char-
acteristica. The ambiguities of ordinary language are too well known for it to
be necessary for us to give instances. The objects of a complete logical sym-
bolism are: �rstly, to avoid this disadvantage by providing an ideography, in
which the signs represent ideas and the relations between them directly (with-
out the intermediary of words), and secondly, so to manage that, from given
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premises, we can, in this ideography, draw all the logical conclusions which they
imply by means of rules of transformation of formulas analogous to those of
algebra,�in fact, in which we can replace reasoning by the almost mechanical
process of calculation. This second requirement is the requirement of a calculus
ratiocinator. It is essential that the ideography should be complete, that only
symbols with a well-de�ned meaning should be used�to avoid the same sort of
ambiguities that words have�and, consequently,�that no suppositions should
be introduced implicitly, as is commonly the case if the meaning of signs is not
well de�ned. Whatever premises are necessary and su�cient for a conclusion
should be stated explicitly.

Besides this, it is of practical importance,�though it is theoretically irrelevant,�
that the ideography should be concise, so that it is a sort of stenography.

The merits of such an ideography are obvious: rigor of reasoning is ensured
by the calculus character; we are sure of not introducing unintentionally any
premise; and we can see exactly on what propositions any demonstration de-
pends.

We can shortly, but very fairly accurately, characterize the dual development
of the theory of symbolic logic during the last sixty years as follows: The calculus
ratiocinator aspect of symbolic logic was developed by Boole, De Morgan,
Jevons, Venn, C. S. Peirce, Schröder, Mrs. Ladd-Franklin and
others; the lingua characteristica aspect was developed by Frege, Peano
and Russell. Of course there is no hard and fast boundary-line between the
domains of these two parties. Thus Peirce and Schröder early began to
work at the foundations of arithmetic with the help of the calculus of relations;
and thus they did not consider the logical calculus merely as an interesting
branch of algebra. Then Peano paid particular attention to the calculative
aspect of his symbolism. Frege has remarked that his own symbolism is
meant to be a calculus ratiocinator as well as a lingua characteristica, but the
using of Frege's symbolism as a calculus would be rather like using a three-
legged stand-camera for what is called �snap-shot� photography, and one of the
outwardly most noticeable things about Russell's work is his combination of
the symbolisms of Frege and Peano in such a way as to preserve nearly all
of the merits of each.

The present work is concerned with the calculus ratiocinator aspect, and
shows, in an admirably succinct form, the beauty, symmetry and simplicity of
the calculus of logic regarded as an algebra. In fact, it can hardly be doubted
that some such form as the one in which Schröder left it is by far the best
for exhibiting it from this point of view.8 The content of the present volume
corresponds to the two �rst volumes of Schröder's great but rather prolix
treatise.9 Principally owing to the in�uence of C. S. Peirce, Schröder

8Cf. A. N. Whitehead, A Treatise on Universal Algebra with Applications, Cambridge,
1898.

9Vorlesungen über die Algebra der Logik, Vol. I., Leipsic, 1890; Vol. II, 1891 and 1905. We
may mention that a much shorter Abriss of the work has been prepared by Eugen Müller.
Vol. III (1895) of Schröder's work is on the logic of relatives founded by De Morgan
and C. S. Peirce, �a branch of Logic that is only mentioned in the concluding sentences
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departed from the custom of Boole, Jevons, and himself (1877), which
consisted in the making fundamental of the notion of equality, and adopted the
notion of subordination or inclusion as a primitive notion. A more orthodox
Boolian exposition is that of Venn, 10 which also contains many valuable
historical notes.

We will �nally make two remarks.
When Boole (cf. �0.2 below) spoke of propositions determining a class of

moments at which they are true, he really (as did MacColl ) used the word
�proposition� for what we now call a �propositional function�. A �proposition�
is a thing expressed by such a phrase as �twice two are four� or �twice two are
�ve�, and is always true or always false. But we might seem to be stating a
proposition when we say: �Mr. William Jennings Bryan is Candidate for
the Presidency of the United States�, a statement which is sometimes true and
sometimes false. But such a statement is like a mathematical function in so far
as it depends on a variable�the time. Functions of this kind are conveniently
distinguished from such entities as that expressed by the phrase �twice two
are four� by calling the latter entities �propositions� and the former entities
�propositional functions�: when the variable in a propositional function is �xed,
the function becomes a proposition. There is, of course, no sort of necessity
why these special names should be used; the use of them is merely a question
of convenience and convention.

In the second place, it must be carefully observed that, in �0.13, 0 and 1 are
not de�ned by expressions whose principal copulas are relations of inclusion. A
de�nition is simply the convention that, for the sake of brevity or some other
convenience, a certain new sign is to be used instead of a group of signs whose
meaning is already known. Thus, it is the sign of equality that forms the princi-
pal copula. The theory of de�nition has been most minutely studied, in modern
times by Frege and Peano.

Philip E. B. Jourdain.

Girton, Cambridge. England.

of this volume.
10Symbolic Logic, London, 1881; 2nd ed., 1894.
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0.1 Introduction
The algebra of logic was founded by George Boole (1815�1864); it was
developed and perfected by Ernst Schröder (1841�1902). The fundamental
laws of this calculus were devised to express the principles of reasoning, the
�laws of thought�. But this calculus may be considered from the purely formal
point of view, which is that of mathematics, as an algebra based upon certain
principles arbitrarily laid down. It belongs to the realm of philosophy to decide
whether, and in what measure, this calculus corresponds to the actual operations
of the mind, and is adapted to translate or even to replace argument; we cannot
discuss this point here. The formal value of this calculus and its interest for the
mathematician are absolutely independent of the interpretation given it and of
the application which can be made of it to logical problems. In short, we shall
discuss it not as logic but as algebra.

0.2 The Two Interpretations of the Logical Cal-
culus

There is one circumstance of particular interest, namely, that the algebra in
question, like logic, is susceptible of two distinct interpretations, the parallelism
between them being almost perfect, according as the letters represent concepts
or propositions. Doubtless we can, with Boole and Schröder, reduce
the two interpretations to one, by considering the concepts on the one hand
and the propositions on the other as corresponding to assemblages or classes;
since a concept determines the class of objects to which it is applied (and which
in logic is called its extension), and a proposition determines the class of the
instances or moments of time in which it is true (and which by analogy can also
be called its extension). Accordingly the calculus of concepts and the calculus of
propositions become reduced to but one, the calculus of classes, or, as Leibniz
called it, the theory of the whole and part, of that which contains and that which
is contained. But as a matter of fact, the calculus of concepts and the calculus
of propositions present certain di�erences, as we shall see, which prevent their
complete identi�cation from the formal point of view and consequently their
reduction to a single �calculus of classes�.

Accordingly we have in reality three distinct calculi, or, in the part common
to all, three di�erent interpretations of the same calculus. In any case the reader
must not forget that the logical value and the deductive sequence of the formulas
does not in the least depend upon the interpretations which may be given them,
and, in order to make this necessary abstraction easier, we shall take care to
place the symbols �C. I.� (conceptual interpretation) and �P. I.� (prepositional
interpretation) before all interpretative phrases. These interpretations shall
serve only to render the formulas intelligible, to give them clearness and to
make their meaning at once obvious, but never to justify them. They may be
omitted without destroying the logical rigidity of the system.
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In order not to favor either interpretation we shall say that the letters repre-
sent terms; these terms may be either concepts or propositions according to the
case in hand. Hence we use the word term only in the logical sense. When we
wish to designate the �terms� of a sum we shall use the word summand in order
that the logical and mathematical meanings of the word may not be confused.
A term may therefore be either a factor or a summand.

0.3 Relation of Inclusion
Like all deductive theories, the algebra of logic may be established on various
systems of principles14; we shall choose the one which most nearly approaches
the exposition of Schröder and current logical interpretation.

The fundamental relation of this calculus is the binary (two-termed) relation
which is called inclusion (for classes), subsumption (for concepts), or implication
(for propositions). We will adopt the �rst name as a�ecting alike the two logical
interpretations, and we will represent this relation by the sign < because it has
formal properties analogous to those of the mathematical relation < (�less than�)
or more exactly ≤, especially the relation of not being symmetrical. Because of
this analogy Schröder represents this relation by the sign ∈ which we shall
not employ because it is complex, whereas the relation of inclusion is a simple
one.

In the system of principles which we shall adopt, this relation is taken as a
primitive idea and is consequently inde�nable. The explanations which follow
are not given for the purpose of de�ning it but only to indicate its meaning
according to each of the two interpretations.

C. I.: When a and b denote concepts, the relation a < b signi�es that the
concept a is subsumed under the concept b; that is, it is a species with respect
to the genus b. From the extensive point of view, it denotes that the class of a's
is contained in the class of b's or makes a part of it; or, more concisely, that �All
a's are b's�. From the comprehensive point of view it means that the concept
b is contained in the concept a or makes a part of it, so that consequently the
character a implies or involves the character b. Example: �All men are mortal�;
�Man implies mortal�; �Who says man says mortal�; or, simply, �Man, therefore
mortal�.

P. I.: When a and b denote propositions, the relation a < b signi�es that the
proposition a implies or involves the proposition b, which is often expressed by
the hypothetical judgement, �If a is true, b is true�; or by �a implies b�; or more
simply by �a, therefore b�. We see that in both interpretations the relation <
may be translated approximately by �therefore�.

14See Huntington, �Sets of Independent Postulates for the Algebra of Logic�, Transactions
of the Am. Math. Soc., Vol. V, 1904, pp. 288�309. [Here he says: �Any set of consistent
postulates would give rise to a corresponding algebra, viz., the totality of propositions which
follow from these postulates by logical deductions. Every set of postulates should be free from
redundances, in other words, the postulates of each set should be independent, no one of them
deducible from the rest.�]
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Remark.�Such a relation as �a < b� is a proposition, whatever may be the
interpretation of the terms a and b. Consequently, whenever a < relation has
two like relations (or even only one) for its members, it can receive only the
propositional interpretation, that is to say, it can only denote an implication.

A relation whose members are simple terms (letters) is called a primary
proposition; a relation whose members are primary propositions is called a sec-
ondary proposition, and so on.

From this it may be seen at once that the propositional interpretation is
more homogeneous than the conceptual, since it alone makes it possible to give
the same meaning to the copula < in both primary and secondary propositions.

0.4 De�nition of Equality
There is a second copula that may be de�ned by means of the �rst; this is the
copular = (�equal to�). By de�nition we have

a = b,

whenever
a < b and b < a

are true at the same time, and then only. In other words, the single relation
a = b is equivalent to the two simultaneous relations a < b and b < a.

In both interpretations the meaning of the copula = is determined by its
formal de�nition:

C. I.: a = b means, �All a's are b's and all b's are a's�; in other words, that
the classes a and b coincide, that they are identical.15

P. I.: a = b means that a implies b and b implies a; in other words, that the
propositions a and b are equivalent, that is to say, either true or false at the
same time.16

Remark.�The relation of equality is symmetrical by very reason of its def-
inition: a = b is equivalent to b = a. But the relation of inclusion is not
symmetrical: a < b is not equivalent to b < a, nor does it imply it. We might
agree to consider the expression a > b equivalent to b < a, but we prefer for
the sake of clearness to preserve always the same sense for the copula <. How-
ever, we might translate verbally the same inclusion a < b sometimes by �a is
contained in b�, and sometimes by �b contains a�.

In order not to favor either interpretation, we will call the �rst member of
this relation the antecedent and the second the consequent .

C. I.: The antecedent is the subject and the consequent is the predicate of a
universal a�rmative proposition.

15This does not mean that the concepts a and b have the same meaning. Examples: �trian-
gle� and �trilateral�, �equiangular triangle� and �equilateral triangle�.

16This does not mean that they have the same meaning. Example: �The triangle ABC has
two equal sides�, and �The triangle ABC has two equal angles�.
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P. I.: The antecedent is the premise or the cause, and the consequent is the
consequence. When an implication is translated by a hypothetical (or condi-
tional) judgment the antecedent is called the hypothesis (or the condition) and
the consequent is called the thesis.

When we shall have to demonstrate an equality we shall usually analyze it
into two converse inclusions and demonstrate them separately. This analysis is
sometimes made also when the equality is a datum (a premise).

When both members of the equality are propositions, it can be separated into
two implications, of which one is called a theorem and the other its reciprocal.
Thus whenever a theorem and its reciprocal are true we have an equality. A
simple theorem gives rise to an implication whose antecedent is the hypothesis
and whose consequent is the thesis of the theorem.

It is often said that the hypothesis is the su�cient condition of the thesis, and
the thesis the necessary condition of the hypothesis; that is to say, it is su�cient
that the hypothesis be true for the thesis to be true; while it is necessary that
the thesis be true for the hypothesis to be true also. When a theorem and its
reciprocal are true we say that its hypothesis is the necessary and su�cient
condition of the thesis; that is to say, that it is at the same time both cause and
consequence.

0.5 Principle of Identity
The �rst principle or axiom of the algebra of logic is the principle of identity,
which is formulated thus:

Ax. 1
a < a,

whatever the term a may be.

C. I.: �All a's are a's�, i.e., any class whatsoever is contained in itself.
P. I.: �a implies a�, i.e., any proposition whatsoever implies itself.
This is the primitive formula of the principle of identity. By means of the

de�nition of equality, we may deduce from it another formula which is often
wrongly taken as the expression of this principle:

a = a,

whatever a may be; for when we have

a < a, a < a,

we have as a direct result,
a = a.

C. I.: The class a is identical with itself.
P. I.: The proposition a is equivalent to itself.
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0.6 Principle of the Syllogism
Another principle of the algebra of logic is the principle of the syllogism, which
may be formulated as follows:

Ax. 2
(a < b)(b < c) < (a < c).

C. I.: �If all a's are b's, and if all b's are c's, then all a's are c's�. This is the
principle of the categorical syllogism.

P. I.: �If a implies b, and if b implies c, a implies c.� This is the principle of
the hypothetical syllogism.

We see that in this formula the principal copula has always the sense of
implication because the proposition is a secondary one.

By the de�nition of equality the consequences of the principle of the syllogism
may be stated in the following formulas17:

(a < b) (b = c) < (a < c),
(a = b) (b < c) < (a < c),
(a = b) (b− c) < (a = c).

The conclusion is an equality only when both premises are equalities.
The preceding formulas can be generalized as follows:

(a < b) (b < c) (c < d) < (a < d),
(a = b) (b = c) (c = d) < (a = d).

Here we have the two chief formulas of the sorites. Many other combinations
may be easily imagined, but we can have an equality for a conclusion only when
all the premises are equalities. This statement is of great practical value. In
a succession of deductions we must pay close attention to see if the transition
from one proposition to the other takes place by means of an equivalence or only
of an implication. There is no equivalence between two extreme propositions
unless all intermediate deductions are equivalences; in other words, if there is
one single implication in the chain, the relation of the two extreme propositions
is only that of implication.

0.7 Multiplication and Addition
The algebra of logic admits of three operations, logical multiplication, logical
addition, and negation. The two former are binary operations, that is to say,
combinations of two terms having as a consequent a third term which may or
may not be di�erent from each of them. The existence of the logical product

17Strictly speaking, these formulas presuppose the laws of multiplication which will be
established further on; but it is �tting to cite them here in order to compare them with the
principle of the syllogism from which they are derived.
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and logical sum of two terms must necessarily answer the purpose of a double
postulate, for simply to de�ne an entity is not enough for it to exist. The two
postulates may be formulated thus:

Ax. 3 Given any two terms, a and b, then there is a term p such that

p < a, p < b,

and that for every value of x for which

x < a, x < b,

we have also
x < p.

Ax. 4 Given any two terms, a and b, there exists a term s such that

a < s, b < s,

we have also
s < x.

It is easily proved that the terms p and s determined by the given conditions
are unique, and accordingly we can de�ne the product ab and the sum a + b as
being respectively the terms p and s.

C. I.: 1. The product of two classes is a class p which is contained in each
of them and which contains every (other) class contained in each of them;

2. The sum of two classes a and b is a class s which contains each of them
and which is contained in every (other) class which contains each of them.

Taking the words �less than� and �greater than� in a metaphorical sense
which the analogy of the relation < with the mathematical relation of inequality
suggests, it may be said that the product of two classes is the greatest class
contained in both, and the sum of two classes is the smallest class which contains
both.18 Consequently the product of two classes is the part that is common to
each (the class of their common elements) and the sum of two classes is the class
of all the elements which belong to at least one of them.

P. I.: 1. The product of two propositions is a proposition which implies each
of them and which is implied by every proposition which implies both:

2. The sum of two propositions is the proposition which is implied by each
of them and which implies every proposition implied by both.

Therefore we can say that the product of two propositions is their weakest
common cause, and that their sum is their strongest common consequence,
strong and weak being used in a sense that every proposition which implies

18According to another analogy Dedekind designated the logical sum and product by the
same signs as the least common multiple and greatest common divisor (Was sind und was
sollen die Zahlen? Nos. 8 and 17, 1887. [Cf. English translation entitled Essays on Number
(Chicago, Open Court Publishing Co. 1901, pp. 46 and 48)] Georg Cantor originally gave
them the same designation (Mathematische Annalen, Vol. XVII, 1880).
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another is stronger than the latter and the latter is weaker than the one which
implies it. Thus it is easily seen that the product of two propositions consists
in their simultaneous a�rmation: �a and b are true�, or simply �a and b�; and
that their sum consists in their alternative a�rmation, �either a or b is true�, or
simply �a or b�.

Remark.�Logical addition thus de�ned is not disjunctive;19 that is to say,
it does not presuppose that the two summands have no element in common.

0.8 Principles of Simpli�cation and Composition
The two preceding de�nitions, or rather the postulates which precede and justify
them, yield directly the following formulas:

ab < a, ab < b,(1)
(x < a)(x < b) < (x < ab),(2)
a < a + b, b < a + b,(3)

(a < x)(b < x) < (a + b < x).(4)

Formulas (1) and (3) bear the name of the principle of simpli�cation because
by means of them the premises of an argument may be simpli�ed by deducing
therefrom weaker propositions, either by deducing one of the factors from a
product, or by deducing from a proposition a sum (alternative) of which it is a
summand.

Formulas (2) and (4) are called the principle of composition, because by
means of them two inclusions of the same antecedent or the same consequent
may be combined (composed). In the �rst case we have the product of the
consequents, in the second, the sum of the antecedents.

The formulas of the principle of composition can be transformed into equal-
ities by means of the principles of the syllogism and of simpli�cation. Thus we
have

(x < ab)(ab < a) < (x < a),1 (Syll.)
(x < ab)(ab < b) < (x < b).(Syll.)

Therefore

(x < ab) < (x < a)(x < b).(Comp.)
(a < a + b)(a + b < x) < (a < x),2 (Syll.)
(b < a + b)(a + b < x) < (b < x).(Syll.)

19 Boole, closely following analogy with ordinary mathematics, premised, as a necessary
condition to the de�nition of �x + y�, that x and y were mutually exclusive. Jevons, and
practically all mathematical logicians after him, advocated, on various grounds, the de�nition
of �logical addition� in a form which does not necessitate mutual exclusiveness.
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Therefore

(a + b < x) < (a < x)(b < x).(Comp.)

If we compare the new formulas with those preceding, which are their con-
verse propositions, we may write

(x < ab) = (x < a)(x < b),
(a + b < x) = (a < x)(b < x).

Thus, to say that x's contained in ab is equivalent to saying that it is con-
tained at the same time in both a and b; and to say that x contains a + b is
equivalent to saying that it contains at the same time both a and b.

0.9 The Laws of Tautology and of Absorption
Since the de�nitions of the logical sum and product do not imply any order
among the terms added or multiplied, logical addition and multiplication evi-
dently possess commutative and associative properties which may be expressed
in the formulas

ab = ba,

(ab)c = a(bc),
a + b = b + a,

(a + b) + c = a + (b + c).

Moreover they possess a special property which is expressed in the law of
tautology:

a = aa, a = a + a.

Demonstration:

aa < a,1 (Simpl.)
(a < a)(a < a) = (a < aa)(Comp.)

whence, by the de�nition of equality,

(aa < a)(a < aa) = (a− aa)

In the same way:

a < a + a,2 (Simpl.)
(a < a)(a < a) = (a + a < a),(Comp.)

whence

(a < a + a)(a + a < a) = (a = a + a).
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From this law it follows that the sum or product of any number whatever
of equal (identical) terms is equal to one single term. Therefore in the algebra
of logic there are neither multiples nor powers, in which respect it is very much
simpler than numerical algebra.

Finally, logical addition and multiplication posses a remarkable property
which also serves greatly to simplify calculations, and which is expressed by the
law of absorption:

a + ab = a, a(a + b) = a.

Demonstration:

(a < a)(ab < a) < (a + ab < a),1 (Comp.)
a < a + ab,(Simpl.)

whence, by the de�nition of equality,

(a + ab < a)(a < a + ab) = (a + ab = a).

In the same way:

(a < a)(a < a + b) < [a < a(a + b)],1 (Comp.)
a(a + b) < a,(Simpl.)

whence

[a < a(a + b)][a(a + b) < a] = [a(a + b) = a].

Thus a term (a) absorbs a summand (ab) of which it is a factor, or a factor
(a + b) of which it is a summand.

0.10 Theorems on Multiplication and Addition
We can now establish two theorems with regard to the combination of inclusions
and equalities by addition and multiplication:

Th. 1
(a < b) < (ac < bc), (a < b) < (a + c < b + c).

Demonstration:

ac < c,1 (Simpl.)
(ac < a)(a < b) < (ac < b),(Syll.)

(ac < b)(ac < c) < (ac < bc).(Comp.)
c < b + c,2 (Simpl.)

(a < b)(b < b + c) < (a < b + c).(Syll.)
(a < b + c)(a < b + c) < (a + c < b + c).(Comp.)
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This theorem may be easily extended to the case of equalities:

(a = b) < (ac = bc), (a = b) < (a + c = b + c).

Th. 2

(a < b)(c < d) < (ac < bd),
(a < b)(c < d) < (a + c < b + d).

Demonstration:

(ac < a)(a < b) < (ac < b),1 (Syll.)
(ac < c)(c < d) < (ac < a),(Syll.)

(ac < b)(ac < d) < (ac < bd).(Comp.)
(a < b)(b < b + d) < (a < b + d),2 (Syll.)
(c < d)(d < b + d) < (c < b + d),(Syll.)

(a < b + d)(c < b + d) < (a + c < b + d).(Comp.)

This theorem may easily be extended to the case in which one of the two
inclusions is replaced by an equality:

(a = b)(c < d) < (ac < bd),
(a = b)(c < d) < (a + c < b + d).

When both are replaced by equalities the result is an equality:

(a = b)(c = d) < (ac = bd),
(a = b)(c = d) < (a + c = b + d).

To sum up, two or more inclusions or equalities can be added or multiplied
together member by member; the result will not be an equality unless all the
propositions combined are equalities.

0.11 The First Formula for Transforming Inclu-
sions into Equalities

We can now demonstrate an important formula by which an inclusion may be
transformed into an equality, or vice versa:

(a < b) = (a = ab) (a < b) = (a + b = b)

Demonstration:

1. (a < b) < (a = ab), (a < b) < (a + b = b).

11



For

(a < a)(a < b) < (a < ab),(Comp.)
(a < b)(b < b) < (a + b < b).

On the other hand, we have

ab < a, b < a + b,(Simpl.)
(a < ab)(ab < a) = (a = ab)(Def. =)

(a + b < b)(b < a + b) = (a + b = b).

2. (a = ab) < (a < b), (a + b = b) < (a < b).

For

(a− ab)(ab < b) < (a < b),
(a < a + b)(a + b = b) < (a < b).

Remark.�If we take the relation of equality as a primitive idea (one not
de�ned) we shall be able to de�ne the relation of inclusion by means of one
of the two preceding formulas.20 We shall then be able to demonstrate the
principle of the syllogism.21

From the preceding formulas may be derived an interesting result:

(a = b) = (ab = a + b).

For

(a = b) = (a < b)(b < a),1.
(a < b) = (a = ab), (b < a) = (a + b = a),

(a = ab)(a + b = a) < (ab = a + b).(Syll.)

(ab = a + b) < (a + b < ab),2.
(a + b < ab) = (a < ab)(b < ab),(Comp.)

(a < ab)(ab < a) = (a = ab) = (a < b),
(b < ab)(ab < b) = (b = ab) = (b < a),

Hence
(ab = a + b) < (a < b)(b < a) = (a = b).

20See Huntington, op. cit., �??.
21This can be demonstrated as follows: By de�nition we have (a < b) = (a = ab), and

(b < c) = (b = bc). If in the �rst equality we substitute for b its value derived from the second
equality, then a = abc. Substitute for a its equivalent ab, then ab = abc. This equality is
equivalent to the inclusion, ab < c. Conversely substitute a for ab; whence we have a < c.
Q.E.D.
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0.12 The Distributive Law
The principles previously stated make it possible to demonstrate the converse
distributive law, both of multiplication with respect to addition, and of addition
with respect to multiplication,

ac + bc < (a + b)c, ab + c < (a + c)(b + c).

Demonstration:

(a < a + b) < [ac < (a + b)c],
(b < a + b) < [bc < (a + b)c];

whence, by composition,

[ac < (a + b)c][bc < (a + b)c] < [ac + bc < (a + b)c]

(ab < a) < (ab + c < a + c),2.
(ab < b) < (ab + c < b + c),

whence, by composition,

(ab + c < a + c)(ab + c < b + c) < [ab + c < (a + c)(b + c)].

But these principles are not su�cient to demonstrate the direct distributive
law

(a + b)c < ac + bc, (a + c)(b + c) < ab + c,

and we are obliged to postulate one of these formulas or some simpler one
from which they can be derived. For greater convenience we shall postulate the
formula

Ax. 5
(a + b)c < ac + bc.

This, combined with the converse formula, produces the equality

(a + b)c = ac + bc

which we shall call brie�y the distributive law.
From this may be directly deduced the formula

(a + b)(c + d) = ac + bc + ad + bd,

and consequently the second formula of the distributive law,

(a + c)(b + c) = ab + c.
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For
(a + c)(b + c) = ab + ac + bc + c,

and, by the law of absorption,

ac + bc + c = c.

This second formula implies the inclusion cited above,

(a + c)(b + c) < ab + c,

which thus is shown to be proved.
Corollary.�We have the equality

ab + ac + bc = (a + b)(a + c)(b + c),

for
(a + b)(a + c)(b + c) = (a + bc)(b + c) = ab + ac + bc.

It will be noted that the two members of this equality di�er only in having
the signs of multiplication and addition transposed (compare �0.14).

0.13 De�nition of 0 and 1
We shall now de�ne and introduce into the logical calculus two special terms
which we shall designate by 0 and by 1, because of some formal analogies that
they present with the zero and unity of arithmetic. These two terms are formally
de�ned by the two following principles which a�rm or postulate their existence.

Ax. 6 There is a term 0 such that whatever value may be given to the term x,
we have

0 < x.

Ax. 7 There is a term 1 such that whatever value may be given to the term x,
we have

x < 1.

It may be shown that each of the terms thus de�ned is unique; that is to
say, if a second term possesses the same property it is equal to (identical with)
the �rst.

The two interpretations of these terms give rise to paradoxes which we shall
not stop to elucidate here, but which will be justi�ed by the conclusions of the
theory.22

C. I.: 0 denotes the class contained in every class; hence it is the �null� or
�void� class which contains no element (Nothing or Naught), 1 denotes the class
which contains all classes; hence it is the totality of the elements which are

22Compare the author'sManuel de Logistique, Chap. I., �8, Paris, 1905 [This work, however,
did not appear].
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contained within it. It is called, after Boole, the �universe of discourse� or
simply the �whole�.

P. I.: 0 denotes the proposition which implies every proposition; it is the
�false� or the �absurd�, for it implies notably all pairs of contradictory proposi-
tions, 1 denotes the proposition which is implied in every proposition; it is the
�true�, for the false may imply the true whereas the true can imply only the
true.

By de�nition we have the following inclusions

0 < 0, 0 < 1, 1 < 1,

the �rst and last of which, moreover, result from the principle of identity. It is
important to bear the second in mind.

C. I.: The null class is contained in the whole.23
P. I.: The false implies the true.
By the de�nitions of 0 and 1 we have the equivalences

(a < 0) = (a = 0), (1 < a) = (a = 1),

since we have
0 < a, a < 1

whatever the value of a.
Consequently the principle of composition gives rise to the two following

corollaries:

(a = 0)(b = 0) = (a + b = 0),
(a = 1)(b = 1) = (ab = 1).

Thus we can combine two equalities having 0 for a second member by adding
their �rst members, and two equalities having 1 for a second member by multi-
plying their �rst members.

Conversely, to say that a sum is �null� [zero] is to say that each of the
summands is null; to say that a product is equal to 1 is to say that each of its
factors is equal to 1.

Thus we have

(a + b = 0) < (a = 0),
(ab = 1) < (a = 1),

and more generally (by the principle of the syllogism)

(a < b)(b = 0) < (a = 0),
(a < b)(a = 1) < (b = 1).

It will be noted that we can not conclude from these the equalities ab = 0
and a + b = 1. And indeed in the conceptual interpretation the �rst equality

23The rendering �Nothing is everything� must be avoided.
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denotes that the part common to the classes a and b is null; it by no means
follows that either one or the other of these classes is null. The second denotes
that these two classes combined form the whole; it by no means follows that
either one or the other is equal to the whole.

The following formulas comprising the rules for the calculus of 0 and 1, can
be demonstrated:

a× 0 = 0, a + 1 = 1,

a + 0 = a, a× 1 = a.

For

(0 < a) = (0 = 0× a) = (a + 0 = a),
(a < 1) = (a = a× 1) = (a + 1 = 1).

Accordingly it does not change a term to add 0 to it or to multiply it by 1.
We express this fact by saying that 0 is the modulus of addition and 1 the
modulus of multiplication.

On the other hand, the product of any term whatever by 0 is 0 and the sum
of any term whatever with 1 is 1.

These formulas justify the following interpretation of the two terms:
C. I.: The part common to any class whatever and to the null class is the

null class; the sum of any class whatever and of the whole is the whole. The
sum of the null class and of any class whatever is equal to the latter; the part
common to the whole and any class whatever is equal to the latter.

P. I.: The simultaneous a�rmation of any proposition whatever and of a
false proposition is equivalent to the latter (i.e., it is false); while their alter-
native a�rmation is equal to the former. The simultaneous a�rmation of any
proposition whatever and of a true proposition is equivalent to the former; while
their alternative a�rmation is equivalent to the latter (i.e., it is true).

Remark.�If we accept the four preceding formulas as axioms, because of
the proof a�orded by the double interpretation, we may deduce from them the
paradoxical formulas

0 < x, and x < 1,

by means of the equivalences established above,

(a− ab) = (a < b) = (a + b = b).

0.14 The Law of Duality
We have proved that a perfect symmetry exists between the formulas relating to
multiplication and those relating to addition. We can pass from one class to the
other by interchanging the signs of addition and multiplication, on condition
that we also interchange the terms 0 and 1 and reverse the meaning of the
sign < (or transpose the two members of an inclusion). This symmetry, or
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duality as it is called, which exists in principles and de�nitions, must also exist
in all the formulas deduced from them as long as no principle or de�nition is
introduced which would overthrow them. Hence a true formula may be deduced
from another true formula by transforming it by the principle of duality; that
is, by following the rule given above. In its application the law of duality makes
it possible to replace two demonstrations by one. It is well to note that this
law is derived from the de�nitions of addition and multiplication (the formulas
for which are reciprocal by duality) and not, as is often thought24, from the
laws of negation which have not yet been stated. We shall see that these laws
possess the same property and consequently preserve the duality, but they do
not originate it; and duality would exist even if the idea of negation were not
introduced. For instance, the equality (�0.12)

ab + ac + bc = (a + b)(a + c)(b + c)

is its own reciprocal by duality, for its two members are transformed into each
other by duality.

It is worth remarking that the law of duality is only applicable to primary
propositions. We call [after Boole ] those propositions primary which contain
but one copula (< or =). We call those propositions secondary of which both
members (connected by the copula < or =) are primary propositions, and so
on. For instance, the principle of identity and the principle of simpli�cation are
primary propositions, while the principle of the syllogism and the principle of
composition are secondary propositions.

0.15 De�nition of Negation
The introduction of the terms 0 and 1 makes it possible for us to de�ne negation.
This is a �uni-nary� operation which transforms a single term into another term
called its negative.25 The negative of a is called not-a and is written a′.26 Its
formal de�nition implies the following postulate of existence27:

24 Boole thus derives it (Laws of Thought, London 1854, Chap. III, Prop. IV).
25[In French] the same word negation denotes both the operation and its result, which

becomes equivocal. The result ought to be denoted by another word, like [the English] �nega-
tive�. Some authors say, �supplementary� or �supplement�, [e.g. Boole and Huntington
], Classical logic makes use of the term �contradictory� especially for propositions.

26We adopt here the notation of MacColl; Schröder indicates not-a by a1 which
prevents the use of indices and obliges us to express them as exponents. The notation a′ has
the advantage of excluding neither indices nor exponents. The notation ā employed by many
authors is inconvenient for typographical reasons. When the negative a�ects a proposition
written in an explicit form (with a copula) it is applied to the copula < or =) by a vertical
bar (≮) or 6=). The accent can be considered as the indication of a vertical bar applied to
letters.

27 Boole follows Aristotle in usually calling the law of duality the principle of contradiction
�which a�rms that it is impossible for any being to possess a quality and at the same time
not to possess it�. He writes it in the form of an equation of the second degree, x− x2 = 0, or
x(1− x) = 0 in which 1− x expresses the universe less x, or not x. Thus he regards the law
of duality as derived from negation as stated in note 24 above.
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Ax. 8 Whatever the term a may be, there is also a term a′ such that we have
at the same time

aa′ = 0, a + a′ = 1.

It can be proved by means of the following lemma that if a term so de�ned
exists it is unique:

If at the same time
ac = bc, a + c = b + c,

then
a = b.

Demonstration.�Multiplying both members of the second premise by a, we
have

a + ac = ab + ac.

Multiplying both members by b,
ab + bc = b + bc.

By the �rst premise,
ab + ac = ab + bc.

Hence
a + ac = b + bc,

which by the law of absorption may be reduced to
a = b.

Remark.�This demonstration rests upon the direct distributive law. This
law cannot, then, be demonstrated by means of negation, at least in the system
of principles which we are adopting, without reasoning in a circle.

This lemma being established, let us suppose that the same term a has two
negatives; in other words, let a′1 and a′2 be two terms each of which by itself
satis�es the conditions of the de�nition. We will prove that they are equal.
Since, by hypothesis,

aa′1 = 0, a + a′1 = 1,

aa′2 = 0, a + a′2 = 1,

we have
aa′1 = aa′2, a + a′1 = a + a′2;

whence we conclude, by the preceding lemma, that
a′1 = a′2.

We can now speak of the negative of a term as of a unique and well-de�ned
term.

The uniformity of the operation of negation may be expressed in the follow-
ing manner:

If a = b, then also a′ = b′. By this proposition, both members of an equality
in the logical calculus may be �denied�.
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0.16 The Principles of Contradiction and of Ex-
cluded Middle

By de�nition, a term and its negative verify the two formulas

aa′ = 0, a + a′ = 1,

which represent respectively the principle of contradiction and the principle of
excluded middle.28

C. I.: 1. The classes a and a′ have nothing in common; in other words, no
element can be at the same time both a and not-a.

2. The classes a and a′ combined form the whole; in other words, every
element is either a or not-a.

P. I.: 1. The simultaneous a�rmation of the propositions a and not-a is
false; in other words, these two propositions cannot both be true at the same
time.

2. The alternative a�rmation of the propositions a and not-a is true; in
other words, one of these two propositions must be true.

Two propositions are said to be contradictory when one is the negative of
the other; they cannot both be true or false at the same time. If one is true the
other is false; if one is false the other is true.

This is in agreement with the fact that the terms 0 and 1 are the negatives
of each other; thus we have

0× 1 = 0, 0 + 1 = 1.

Generally speaking, we say that two terms are contradictory when one is the
negative of the other.

0.17 Law of Double Negation
Moreover this reciprocity is general: if a term b is the negative of the term a,
then the term a is the negative of the term b. These two statements are expressed
by the same formulas

ab = 0, a + b = 1,

and, while they unequivocally determine b in terms of a, they likewise determine
a in terms of b. This is due to the symmetry of these relations, that is to say, to
the commutativity of multiplication and addition. This reciprocity is expressed
by the law of double negation

(a′)′ = a,

28As Mrs. Ladd-Franklin has truly remarked ( Baldwin, Dictionary of Philosophy
and Psychology, article �Laws of Thought�), the principle of contradiction is not su�cient to
de�ne contradictories; the principle of excluded middle must be added which equally deserves
the name of principle of contradiction. This is why Mrs. Ladd-Franklin proposes to
call them respectively the principle of exclusion and the principle of exhaustion, inasmuch
as, according to the �rst, two contradictory terms are exclusive (the one of the other); and,
according to the second, they are exhaustive (of the universe of discourse).
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which may be formally proved as follows: a′ being by hypothesis the negative
of a, we have

aa′ = 0, a + a′ = 1.

On the other hand, let a′′ be the negative of a′; we have, in the same way,

a′a′′ = 0, a′ + a′′ = 1.

But, by the preceding lemma, these four equalities involve the equality

a = a′′.

Q. E. D.
This law may be expressed in the following manner:
If b = a′, we have a = b′, and conversely, by symmetry.
This proposition makes it possible, in calculations, to transpose the negative

from one member of an equality to the other.
The law of double negation makes it possible to conclude the equality of two

terms from the equality of their negatives (if a′ = b′ then a = b), and therefore
to cancel the negation of both members of an equality.

From the characteristic formulas of negation together with the fundamental
properties of 0 and 1, it results that every product which contains two contra-
dictory factors is null, and that every sum which contains two contradictory
summands is equal to 1.

In particular, we have the following formulas:

a = ab + ab′, a = (a + b)(a + b′),

which may be demonstrated as follows by means of the distributive law:

a = a× 1 = a(b + b′) = ab + ab′,

a = a + 0 = a + bb′ = (a + b)(a + b′).

These formulas indicate the principle of the method of development which
we shall explain in detail later (��0.21 sqq.)

0.18 Second Formulas for Transforming Inclusions
into Equalities

We can now establish two very important equivalences between inclusions and
equalities:

(a < b) = (ab′ = 0), (a < b) = (a′ + b = 1).

Demonstration.�1. If we multiply the two members of the inclusion a < b
by b′ we have

(ab′ < bb′) = (ab′ < 0) = (ab′ = 0).
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2. Again, we know that
a = ab + ab′.

Now if ab′ = 0,
a = ab + 0 = ab.

On the other hand: 1. Add a′ to each of the two members of the inclusion
a < b; we have

(a′ + a < a′ + b) = (1 < a′ + b) = a′ + b = 1).

2. We know that
b = (a + b)(a′ + b).

Now, if a′ + b = 1,
b = (a + b)× 1 = a + b.

By the preceding formulas, an inclusion can be transformed at will into
an equality whose second member is either 0 or 1. Any equality may also be
transformed into an equality of this form by means of the following formulas:

(a = b) = (ab′ + a′b = 0), (a = b) = [(a + b′)(a′ + b) = 1].

Demonstration:

(a = b) = (a < b)(b < a) = (ab′ = 0)(a′b = 0) = (ab′ + a′b = 0),
(a = b) = (a < b)(b < a) = (a′ + b = 1)(a + b′ = 1) = [(a′ + b′)(a′ + b) = 1].

Again, we have the two formulas

(a = b) = [(a + b)(a′ + b′) = 0], (a = b) = (ab + a′b′ = 1),

which can be deduced from the preceding formulas by performing the indicated
multiplications (or the indicated additions) by means of the distributive law.

0.19 The Law of Contraposition
We are now able to demonstrate the law of contraposition,

(a < b) = (b′ < a′).

Demonstration.�By the preceding formulas, we have

(a < b) = (ab = 0) = (b′ < a′).

Again, the law of contraposition may take the form

(a < b′) = (b < a′),
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which presupposes the law of double negation. It may be expressed verbally as
follows: �Two members of an inclusion may be interchanged on condition that
both are denied�.

C. I.: �If all a is b, then all not-b is not-a, and conversely�.
P. I.: �If a implies b, not-b implies not-a and conversely�; in other words, �If

a is true b is true�, is equivalent to saying, �If b is false, a is false�.
This equivalence is the principle of the reductio ad absurdum (see hypothet-

ical arguments, modus tollens, �0.58).

0.20 Postulate of Existence
One �nal axiom may be formulated here, which we will call the postulate of
existence:

Ax. 9
1 ≮ 0

whence may be also deduced 1 6= 0.
In the conceptual interpretation (C. I.) this axiom means that the universe

of discourse is not null, that is to say, that it contains some elements, at least
one. If it contains but one, there are only two classes possible, 1 and 0. But
even then they would be distinct, and the preceding axiom would be veri�ed.

In the propositional interpretation (P. I.) this axiom signi�es that the true
and false are distinct; in this case, it bears the mark of evidence and necessity.
The contrary proposition, 1 = 0, is, consequently, the type of absurdity (of the
formally false proposition) while the propositions 0 = 0, and 1 = 1 are types of
identity (of the formally true proposition). Accordingly we put

(1 = 0) = 0, (0 = 0) = (l = 1) = 1.

More generally, every equality of the form

x = x

is equivalent to one of the identity-types; for, if we reduce this equality so that
its second member will be 0 or 1, we �nd

(xx′ + xx′ = 0) = (0 = 0), (xx + x′x′ = 1) = (1 = 1).

On the other hand, every equality of the form

x = x′

is equivalent to the absurdity-type, for we �nd by the same process,

(xx + x′x′ = 0) = (1 = 0), (xx′ + xx′ = 1) = (0 = 1).
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0.21 The Development of 0 and of 1
Hitherto we have met only such formulas as directly express customary modes
of reasoning and consequently o�er direct evidence.

We shall now expound theories and methods which depart from the usual
modes of thought and which constitute more particularly the algebra of logic
in so far as it is a formal and, so to speak, automatic method of an absolute
universality and an infallible certainty, replacing reasoning by calculation.

The fundamental process of this method is development. Given the terms
a, b, c . . . (to any �nite number), we can develop 0 or 1 with respect to these terms
(and their negatives) by the following formulas derived from the distributive law:

0 = aa′,

0 = aa′ + bb′ = (a + b)(a + b′)(a′ + b)(a′ + b′),
0 = aa′ + bb′ + cc′ = (a + b + c)(a + b + c′)(a + b′ + c)

× (a + b′ + c′)(a′ + b + c)
× (a′ + b + c′)(a′ + b′ + c)(a′ + b′ + c′);

1 = a + a′,

1 = (a + a′)(b + b′) = ab + ab′ + a′b + a′b′,

1 = (a + a′)(b + b′)(c + c′) = abc + abc′ + ab′c + ab′c′

+ a′bc + a′bc′ + a′b′c + a′b′c′;

and so on. In general, for any number n of simple terms; 0 will be developed in
a product containing 2n factors, and 1 in a sum containing 2n summands. The
factors of zero comprise all possible additive combinations, and the summands
of 1 all possible multiplicative combinations of the n given terms and their
negatives, each combination comprising n di�erent terms and never containing
a term and its negative at the same time.

The summands of the development of 1 are what Boole called the con-
stituents (of the universe of discourse). We may equally well call them, with
Poretsky, 29 the minima of discourse, because they are the smallest classes
into which the universe of discourse is divided with reference to the n given
terms. In the same way we shall call the factors of the development of 0 the
maxima of discourse, because they are the largest classes that can be determined
in the universe of discourse by means of the n given terms.

0.22 Properties of the Constituents
The constituents or minima of discourse possess two properties characteristic
of contradictory terms (of which they are a generalization); they are mutually
exclusive, i.e., the product of any two of them is 0; and they are collectively
exhaustive, i.e., the sum of all �exhausts� the universe of discourse. The latter

29See the Bibliography, page xiv.
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property is evident from the preceding formulas. The other results from the
fact that any two constituents di�er at least in the �sign� of one of the terms
which serve as factors, i.e., one contains this term as a factor and the other the
negative of this term. This is enough, as we know, to ensure that their product
be null.

The maxima of discourse possess analogous and correlative properties; their
combined product is equal to 0, as we have seen; and the sum of any two of
them is equal to 1, inasmuch as they di�er in the sign of at least one of the
terms which enter into them as summands.

For the sake of simplicity, we shall con�ne ourselves, with Boole and
Schröder, to the study of the constituents or minima of discourse, i.e., the
developments of 1. We shall leave to the reader the task of �nding and demon-
strating the corresponding theorems which concern the maxima of discourse or
the developments of 0.

0.23 Logical Functions
We shall call a logical function any term whose expression is complex, that is,
formed of letters which denote simple terms together with the signs of the three
logical operations.30

A logical function may be considered as a function of all the terms of dis-
course, or only of some of them which may be regarded as unknown or variable
and which in this case are denoted by the letters x, y, z. We shall represent a
function of the variables or unknown quantities, x, y, z, by the symbol f(x, y, z)
or by other analogous symbols, as in ordinary algebra. Once for all, a logical
function may be considered as a function of any term of the universe of discourse,
whether or not the term appears in the explicit expression of the function.

0.24 The Law of Development
This being established, we shall proceed to develop a function f(x) with respect
to x. Suppose the problem solved, and let

ax + bx′

be the development sought. By hypothesis we have the equality

f(x) = ax + bx′

for all possible values of x. Make x = 1 and consequently x′ = 0. We have

f(1) = a.

30In this algebra the logical function is analogous to the integral function of ordinary algebra,
except that it has no powers beyond the �rst.
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Then put x = 0 and x′ = 1; we have

f(0) = b.

These two equalities determine the coe�cients a and b of the development
which may then be written as follows:

f(x) = f(1)x + f(0)x′,

in which f(1), f(0) represent the value of the function f(x) when we let x = 1
and x = 0 respectively.

Corollary.�Multiplying both members of the preceding equalities by x and x′

in turn, we have the following pairs of equalities ( MacColl ):

xf(x) = ax x′f(x) = bx′

xf(x) = xf(1), x′f(x) = x′f(0).

Now let a function of two (or more) variables be developed with respect to
the two variables x and y. Developing f(x, y) �rst with respect to x, we �nd

f(x, y) = f(1, y)x + f(0, y)x′.

Then, developing the second member with respect to y, we have

f(x, y) = f(1, 1)xy + f(1, 0)xy′ + f(0, 1)x′y + f(0, 0)x′y′

This result is symmetrical with respect to the two variables, and therefore
independent of the order in which the developments with respect to each of
them are performed.

In the same way we can obtain progressively the development of a function
of 3, 4, . . . . . ., variables.

The general law of these developments is as follows:
To develop a function with respect to n variables, form all the constituents

of these n variables and multiply each of them by the value assumed by the
function when each of the simple factors of the corresponding constituent is
equated to 1 (which is the same thing as equating to 0 those factors whose
negatives appear in the constituent).

When a variable with respect to which the development is made, y for in-
stance, does not appear explicitly in the function (f(x) for instance), we have,
according to the general law,

f(x) = f(x)y + f(x)y′.

In particular, if a is a constant term, independent of the variables with re-
spect to which the development is made, we have for its successive developments,

a = ax + ax′,

a = axy + axy′ + ax′y + ax′y′,

a = axyz + axyz′ + axy′z + axy′z′ + ax′yz + ax′yz′ + ax′y′z

+ ax′y′z′.31
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and so on. Moreover these formulas may be directly obtained by multiplying
by a both members of each development of 1.

Cor. 1. We have the equivalence

(a + x′)(b + x) = ax + bx + ab = ax + bx′.

For, if we develop with respect to x, we have

ax + bx′ + abx + abx′ = (a + ab)x + (b + ab)x′ = ax + bx′.

Cor. 2. We have the equivalence

ax + bx′ + c = (a + c)x + (b + c)x′.

For if we develop the term c with respect to x, we �nd

ax + bx′ + cx + cx′ = (a + c)x + (b + c)x′.

Thus, when a function contains terms (whose sum is represented by c) inde-
pendent of x, we can always reduce it to the developed form ax+bx′ by adding c
to the coe�cients of both x and x′. Therefore we can always consider a function
to be reduced to this form.

In practice, we perform the development by multiplying each term which
does not contain a certain letter (x for instance) by (x + x′) and by developing
the product according to the distributive law. Then, when desired, like terms
may be reduced to a single term.

0.25 The Formulas of De Morgan
In any development of 1, the sum of a certain number of constituents is the
negative of the sum of all the others.

For, by hypothesis, the sum of these two sums is equal to 1, and their product
is equal to 0, since the product of two di�erent constituents is zero.

From this proposition may be deduced the formulas of De Morgan:

(a + b)′ = a′b′, (ab)′ = a′ + b′.

Demonstration.�Let us develop the sum (a + b):

a + b = ab + ab′ + ab + a′b = ab + ab′ + a′b.

Now the development of 1 with respect to a and b contains the three terms
of this development plus a fourth term a′b′. This fourth term, therefore, is the
negative of the sum of the other three.

We can demonstrate the second formula either by a correlative argument
(i.e., considering the development of 0 by factors) or by observing that the
development of (a′ + b′),

a′b + ab′ + a′b′,
31These formulas express the method of classi�cation by dichotomy.
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di�ers from the development of 1 only by the summand ab.
How De Morgan's formulas may be generalized is now clear; for instance

we have for a sum of three terms,
a + b + c = abc + abc′ + ab′c + ab′c′ + a′bc + a′bc′ + a′b′c.

This development di�ers from the development of 1 only by the term a′b′c′.
Thus we can demonstrate the formulas

(a + b + c)′ = a′b′c′, (abc)′ = a′ + b′ + c′,

which are generalizations of De Morgan's formulas.
The formulas of De Morgan are in very frequent use in calculation,

for they make it possible to perform the negation of a sum or a product by
transferring the negation to the simple terms: the negative of a sum is the
product of the negatives of its summands; the negative of a product is the sum
of the negatives of its factors.

These formulas, again, make it possible to pass from a primary proposition
to its correlative proposition by duality, and to demonstrate their equivalence.
For this purpose it is only necessary to apply the law of contraposition to the
given proposition, and then to perform the negation of both members.

Example:
ab + ac + bc = (a + b)(a + c)(b + c).

Demonstration:
(ab + ac + bc)′ = [(a + b)(a + c)(b + c)],
(ab)′(ac)′(bc)′ = (a + b)′ + (a + c)′ + (b + c)′,

(a′ + b′)(a′ + c′)(b′ + c′) = a′b′ + a′c′ + b′c′.

Since the simple terms, a, b, c, may be any terms, we may suppress the sign
of negation by which they are a�ected, and obtain the given formula.

Thus De Morgan's formulas furnish a means by which to �nd or to
demonstrate the formula correlative to another; but, as we have said above
(�0.14), they are not the basis of this correlation.

0.26 Disjunctive Sums
By means of development we can transform any sum into a disjunctive sum,
i.e., one in which each product of its summands taken two by two is zero. For,
let (a+ b+ c) be a sum of which we do not know whether or not the three terms
are disjunctive; let us assume that they are not. Developing, we have:

a + b + c = abc + abc′ + ab′c + ab′c′ + a′bc + a′bc′ + a′b′c.

Now, the �rst four terms of this development constitute the development of
a with respect to b and c; the two following are the development of a′b with
respect to c. The above sum, therefore, reduces to

a + a′b + a′b′c,
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and the terms of this sum are disjunctive like those of the preceding, as may be
veri�ed. This process is general and, moreover, obvious. To enumerate without
repetition all the a's, all the b's, and all the c's, etc., it is clearly su�cient to
enumerate all the a's, then all the b's which are not a's, and then all the c's
which are neither a's nor b's, and so on.

It will be noted that the expression thus obtained is not symmetrical, since
it depends on the order assigned to the original summands. Thus the same sum
may be written:

b + ab′ + a′b′c, c + ac′ + a′bc′, . . . .

Conversely, in order to simplify the expression of a sum, we may suppress as
factors in each of the summands (arranged in any suitable order) the negatives
of each preceding summand. Thus, we may �nd a symmetrical expression for a
sum. For instance,

a + a′b = b + ab′ = a + b.

0.27 Properties of Developed Functions
The practical utility of the process of development in the algebra of logic lies in
the fact that developed functions possess the following property:

The sum or the product of two functions developed with respect to the
same letters is obtained simply by �nding the sum or the product of their
coe�cients. The negative of a developed function is obtained simply by replacing
the coe�cients of its development by their negatives.

We shall now demonstrate these propositions in the case of two variables;
this demonstration will of course be of universal application.

Let the developed functions be

a1xy + b1xy′ + c1x
′y + d1x

′y′,

a2xy + b2xy′ + c2x
′y + d2x

′y′.

1. I say that their sum is

(a1 + a2)xy + (b1 + b2)xy′ + (c1 + c2)x′y + (d1 + d2)x′y′.

This result is derived directly from the distributive law.
2. I say that their product is

a1a2xy + b1b2xy′ + c1c2x
′y + d1d2x

′y′,

for if we �nd their product according to the general rule (by applying the dis-
tributive law), the products of two terms of di�erent constituents will be zero;
therefore there will remain only the products of the terms of the same con-
stituent, and, as (by the law of tautology) the product of this constituent mul-
tiplied by itself is equal to itself, it is only necessary to obtain the product of
the coe�cients.
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3. Finally, I say that the negative of

axy + bxy′ + cx′y + dx′y′

is
a′xy + b′xy′ + c′x′y + d′x′y′.

In order to verify this statement, it is su�cient to prove that the product of
these two functions is zero and that their sum is equal to 1. Thus

(axy + bxy′ + cx′y + dx′y′)(a′xy + b′xy′ + c′x′y + d′x′y′)
= (aa′xy + bb′xy′ + cc′x′y + dd′x′y′)
= (0 · xy + 0 · xy′ + 0 · x′y + 0 · x′y′) = 0

(axy + bxy′ + cx′y + dx′y′) + (a′xy + b′xy′ + c′x′y + d′x′y′)
= [(a + a′)xy + (b + b′)xy′ + (c + c′)x′y + (d + d′)x′y′]
= (1xy + 1xy′ + 1x′y + 1x′y′) = 1.

Special Case.�We have the equalities:

(ab + a′b′)′ = ab′ + a′b,

(ab′ + a′b′)′ = ab + a′b′,

which may easily be demonstrated in many ways; for instance, by observing that
the two sums (ab + a′b′) and (ab′ + a′b) combined form the development of 1;
or again by performing the negation (ab + a′b′)′ by means of De Morgan's
formulas (�0.25).

From these equalities we can deduce the following equality:

(ab′ + ab = 0) = (ab + a′b′ = 1),

which result might also have been obtained in another way by observing that (�0.18)

(a = b) = (ab′ + a′b = 0) = [(a + b′)(a′ + b) = 1],

and by performing the multiplication indicated in the last equality.
Theorem.�We have the following equivalences:32

(a = bc′ + b′c) = (b = ac′ + a′c) = (c = ab′ + a′b).

For, reducing the �rst of these equalities so that its second member will be 0,

a(bc + b′c′) + a′(bc′ + b′c) = 0,

abc + ab′c′ + a′bc′ + a′b′c = 0.

Now it is clear that the �rst member of this equality is symmetrical with
respect to the three terms a, b, c. We may therefore conclude that, if the two

32 W. Stanley Jevons, Pure Logic, 1864, p. 61.
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other equalities which di�er from the �rst only in the permutation of these three
letters be similarly transformed, the same result will be obtained, which proves
the proposed equivalence.

Corollary.�If we have at the same time the three inclusions:

a < bc′ + b′c, b < ac′ + a′c, c < ab′ + a′b.

we have also the converse inclusion, an therefore the corresponding equalities

a = bc′ + b′c, b = ac′ + a′c, c = ab′ + a′b.

For if we transform the given inclusions into equalities, we shall have

abc + ab′c′ = 0, abc + a′bc′ = 0, abc + a′b′c = 0,

whence, by combining them into a single equality,

abc + ab′c′ + a′bc′ + a′b′c = 0.

Now this equality, as we see, is equivalent to any one of the three equalities
to be demonstrated.

0.28 The Limits of a Function
A term x is said to be comprised between two given terms, a and b, when it
contains one and is contained in the other; that is to say, if we have, for instance,

a < x, x < b,

which we may write more brie�y as

a < x < b.

Such a formula is called a double inclusion. When the term x is variable and
always comprised between two constant terms a and b, these terms are called
the limits of x. The �rst (contained in x) is called inferior limit ; the second
(which contains x) is called the superior limit.

Theorem. �A developed function is comprised between the sum and the
product of its coe�cients.

We shall �rst demonstrate this theorem for a function of one variable,

ax + bx′.

We have, on the one hand,

(ab < a) < (abx < ax),
(ab < b) < (abx′ < bx′).
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Therefore
abx + abx′ < ax + bx′,

or
ab < ax + bx′.

On the other hand,

(a < a + b) < [ax < (a + b)x],
(b < a + b) < [bx′ < (a + b)x′].

Therefore
ax + bx′ < (a + b)(x + x′),

or
ax + bx′ < a + b.

To sum up,
ab < ax + bx′ < a + b.

Q. E. D.
Remark 1. This double inclusion may be expressed in the following form:33

f(b) < f(x) < f(a).

For

f(a) = aa + ba′ = a + b,

f(b) = ab + bb′ = ab.

But this form, pertaining as it does to an equation of one unknown quantity,
does not appear susceptible of generalization, whereas the other one does so
appear, for it is readily seen that the former demonstration is of general appli-
cation. Whatever the number of variables n (and consequently the number of
constituents 2n) it may be demonstrated in exactly the same manner that the
function contains the product of its coe�cients and is contained in their sum.
Hence the theorem is of general application.

Remark 2.�This theorem assumes that all the constituents appear in the
development, consequently those that are wanting must really be present with
the coe�cient 0. In this case, the product of all the coe�cients is evidently 0.
Likewise when one coe�cient has the value 1, the sum of all the coe�cients is
equal to 1.

It will be shown later (�0.38) that a function may reach both its limits, and
consequently that they are its extreme values. As yet, however, we know only
that it is always comprised between them.

33 Eugen Müller, Aus der Algebra der Logik, Art. II.
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0.29 Formula of Poretsky.34
We have the equivalence

(x = ax + bx′) = (b < x < a).

Demonstration.�First multiplying by x both members of the given equality
[which is the �rst member of the entire secondary equality], we have

x = ax,

which, as we know, is equivalent to the inclusion

x < a.

Now multiplying both members by x′, we have

0 = bx′,

which, as we know, is equivalent to the inclusion

b < x.

Summing up, we have

(x = ax + bx′) < (b < x < a).

Conversely,
(b < x < a) < (x = ax + bx′).

For

(x < a) = (x = ax),
(b < x) = (bx′ = 0).

Adding these two equalities member to member [the second members of the
two larger equalities],

(x = ax)(o = bx) < (x = ax + bx′).

Therefore
(b < x < a) < (x = ax + bx′)

and thus the equivalence is proved.
34 Poretsky, �Sur les méthodes pour résoudre les égalités logiques�. (Bull. de la Soc.

phys.-math. de Kazan, Vol. II, 1884).
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0.30 Schröder's Theorem.35
The equality

ax + bx′ = 0

signi�es that x lies between a′ and b.
Demonstration:

(ax + bx′ = 0) = (ax = 0)(bx′ = 0),
(ax = 0) = (x < a′),
(bx′ = 0) = (b < x).

Hence
(ax + bx′ = 0) = (b < x < a′).

Comparing this theorem with the formula of Poretsky, we obtain at once
the equality

(ax + bx′ = 0) = (x = a′x + bx′),

which may be directly proved by reducing the formula of Poretsky to an
equality whose second member is 0, thus:

(x = a′x + bx′) = [x(ax + b′x′) + x′(a′x + bx′) = 0] = (ax + bx′ = 0).

If we consider the given equality as an equation in which x is the unknown
quantity, Poretsky's formula will be its solution.

From the double inclusion
b < x < a′

we conclude, by the principle of the syllogism, that

b < a′

This is a consequence of the given equality and is independent of the un-
known quantity x. It is called the resultant of the elimination of x in the given
equation. It is equivalent to the equality

ab = 0.

Therefore we have the implication

(ax + bx′ = 0) < (ab = 0).

Taking this consequence into consideration, the solution may be simpli�ed,
for

(ab = 0) = (b = a′b).

35 Schröder, Operationskreis des Logikkalküls (1877), Theorem 20.
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Therefore

x = a′x + bx′ = a′x + a′bx′

= a′bx + a′b′x + a′bx′ = a′b + a′b′x

= b + a′b′x + b + a′x.

This form of the solution conforms most closely to common sense: since x′

contains b and is contained in a′, it is natural that x should be equal to the sum
of b and a part of a′ (that is to say, the part common to a′ and x). The solution
is generally indeterminate (between the limits a′ and b); it is determinate only
when the limits are equal,

a′ = b,

for then
x = b + a′x = b + bx = b = a′.

Then the equation assumes the form

(ax + a′x′ = 0) = (a′ = x)

and is equivalent to the double inclusion

(a′ < x < a′) = (x = a′).

0.31 The Resultant of Elimination
When ab is not zero, the equation is impossible (always false), because it has a
false consequence. It is for this reason that Schröder considers the resultant
of the elimination as a condition of the equation. But we must not be misled
by this equivocal word. The resultant of the elimination of x is not a cause
of the equation, it is a consequence of it; it is not a su�cient but a necessary
condition.

The same conclusion may be reached by observing that ab is the inferior limit
of the function ax+bx′, and that consequently the function can not vanish unless
this limit is 0.

(ab < ax + bx′)(ax + bx′ = 0) < (ab = 0).

We can express the resultant of elimination in other equivalent forms; for
instance, if we write the equation in the form

(a + x′)(b + x) = 0,

we observe that the resultant
ab = 0

is obtained simply by dropping the unknown quantity (by suppressing the
terms x and x′). Again the equation may be written:

a′x + b′x′ = 1
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and the resultant of elimination:

a′ + b′ = 1.

Here again it is obtained simply by dropping the unknown quantity.36
Remark. If in the equation

ax + bx′ = 0

we substitute for the unknown quantity x its value derived from the equations,

x = a′x + bx′, x′ = ax + b′x′,

we �nd
(abx + abx′ = 0) = (ab = 0),

that is to say, the resultant of the elimination of x which, as we have seen, is
a consequence of the equation itself. Thus we are assured that the value of x
veri�es this equation. Therefore we can, with Voigt, de�ne the solution of an
equation as that value which, when substituted for x in the equation, reduces
it to the resultant of the elimination of x.

Special Case.�When the equation contains a term independent of x, i.e.,
when it is of the form

ax + bx′ + c = 0

it is equivalent to
(a + c)x + (b + c)x′ = 0,

and the resultant of elimination is

(a + c)(b + c) = ab + c = 0,

whence we derive this practical rule: To obtain the resultant of the elimination
of x in this case, it is su�cient to equate to zero the product of the coe�cients
of x and x′, and add to them the term independent of x.

36This is the method of elimination of Mrs. Ladd-Franklin and Mr. Mitchell, but
this rule is deceptive in its apparent simplicity, for it cannot be applied to the same equation
when put in either of the forms

ax + bx′ = 0, (a′ + x′)(b′ + x) = 1.

Now, on the other hand, as we shall see (�0.54), for inequalities it may be applied to the
forms

ax + bx′ 6= 0, (a′ + x′)(b′ + x) 6= 1.

and not to the equivalent forms

(a + x′)(b + x) 6= 0, a′x + b′x′ 6= 1.

Consequently, it has not the mnemonic property attributed to it, for, to use it correctly, it
is necessary to recall to which forms it is applicable.
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0.32 The Case of Indetermination
Just as the resultant

ab = 0

corresponds to the case when the equation is possible, so the equality

a + b = 0

corresponds to the case of absolute indetermination. For in this case the equation
both of whose coe�cients are zero (a = 0), (b = 0), is reduced to an identity
(0 = 0), and therefore is �identically� veri�ed, whatever the value of x may be;
it does not determine the value of x at all, since the double inclusion

b < x < a′

then becomes
0 < x < 1

which does not limit in any way the variability of x. In this case we say that
the equation is indeterminate.

We shall reach the same conclusion if we observe that (a + b) is the superior
limit of the function ax+bx and that, if this limit is 0, the function is necessarily
zero for all values of x,

(ax + bx′ < a + b)(a + b = 0) < (ax + bx′ = 0).

Special Case.�When the equation contains a term independent of x,

ax + bx′ + c = 0,

the condition of absolute indetermination takes the form

a + b + c = 0.

For

ax + bx′ + c = (a + c)x + (b + c)x′,
(a + c) + (b + c) = a + b + c = 0.

0.33 Sums and Products of Functions
It is desirable at this point to introduce a notation borrowed from mathematics,
which is very useful in the algebra of logic. Let f(x) be an expression containing
one variable; suppose that the class of all the possible values of x is determined;
then the class of all the values which the function f(x) can assume in conse-
quence will also be determined. Their sum will be represented by

∑
x f(x) and

their product by
∏

x f(x) This is a new notation and not a new notion, for it is
merely the idea of sum and product applied to the values of a function.
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When the symbols
∑

and
∏

are applied to propositions, they assume an
interesting signi�cance: ∏

x

[f(x) = 0]

means that f(x) = 0 is true for every value of x; and
∑

x

[f(x) = 0]

that f(x) = 0 is true for some value of x. For, in order that a product may
be equal to 1 (i.e., be true), all its factors must be equal to 1 (i.e., be true);
but, in order that a sum may be equal to 1 (i.e., be true), it is su�cient that
only one of its summands be equal to 1 (i.e., be true). Thus we have a means
of expressing universal and particular propositions when they are applied to
variables, especially those in the form: �For every value of x such and such a
proposition is true�, and �For some value of x, such and such a proposition is
true�, etc.

For instance, the equivalence

(a = b) = (ac = bc)(a + c = b + c)

is somewhat paradoxical because the second member contains a term (c) which
does not appear in the �rst. This equivalence is independent of c, so that we
can write it as follows, considering c as a variable x

∏
x

[(a = b) = (ax = bx)(a + x = b + x)],

or, the �rst member being independent of x,

(a = b) =
∏
x

[(ax = bx)(a + x = b + x)].

In general, when a proposition contains a variable term, great care is neces-
sary to distinguish the case in which it is true for every value of the variable,
from the case in which it is true only for some value of the variable.37 This is
the purpose that the symbols

∏
and

∑
serve.

Thus when we say for instance that the equation

ax + bx′ = 0

is possible, we are stating that it can be veri�ed by some value of x; that is to
say, ∑

x

(ax + bx′ = 0),

37This is the same as the distinction made in mathematics between identities and equations,
except that an equation may not be veri�ed by any value of the variable.
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and, since the necessary and su�cient condition for this is that the resultant
(ab = 0) is true, we must write

∑
x

(ax + bx = 0) = (ab = 0),

although we have only the implication

(ax + bx = 0) < (ab = 0).

On the other hand, the necessary and su�cient condition for the equation
to be veri�ed by every value of x is that

a + b = 0.

Demonstration.�1. The condition is su�cient, for if

(a + b = 0) = (a = 0)(b = 0),

we obviously have
ax + bx′ = 0

whatever the value of x; that is to say,
∏
x

(ax + bx′ = 0).

2. The condition is necessary, for if
∏
x

(ax + bx′) = 0,

the equation is true, in particular, for the value x = a; hence

a + b = 0.

Therefore the equivalence
∏
x

(ax + bx′ = 0) = (a + b = 0)

is proved.38 In this instance, the equation reduces to an identity: its �rst
member is �identically� null.

38 Eugen Müller, op. cit.
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0.34 The Expression of an Inclusion by Means of
an Indeterminate

The foregoing notation is indispensable in almost every case where variables or
indeterminates occur in one member of an equivalence, which are not present in
the other. For instance, certain authors predicate the two following equivalences

(a < b) = (a = bu) = (a + v = b),

in which u, v are two �indeterminates�. Now, each of the two equalities has the
inclusion (a < b) as its consequence, as we may assure ourselves by eliminating
u and v respectively from the following equalities:

1. [a(b′ + u′) + a′bu = 0] = [(ab′ + a′b)u + au′ = 0].

Resultant:
[(ab′ + a′b)a = 0] = (ab′ = 0) = (a < b).

2. [(a + v)b′ + a′bv = 0] = [b′v + (ab′ + a′b)v′ = 0].

Resultant:
[b′(ab′ + a′b) = 0] = (ab′ = 0) + (a < b).

But we cannot say, conversely, that the inclusion implies the two equalities
for any values of u and v; and, in fact, we restrict ourselves to the proof that
this implication holds for some value of u and v, namely for the particular values

u = a, b = v;

for we have
(a = ab) = (a < b) = (a + b = b).

But we cannot conclude, from the fact that the implication (and therefore
also the equivalence) is true for some value of the indeterminates, that it is true
for all ; in particular, it is not true for the values

u = 1, v = 0,

for then (a = bu) and (a + v = b) become (a = b), which obviously asserts more
than the given inclusion (a < b).39

Therefore we can write only the equivalences

(a < b) =
∑

u

(a = bu) =
∑

v

(a + v = b),

39Likewise if we make
u = 0, v = 1,

we obtain the equalities
(a = 0), (b = 1),

which assert still more than the given inclusion.

39



but the three expressions

(a < b),
∏
u

(a = bu),
∏
v

(a + v = b)

are not equivalent.40

0.35 The Expression of a Double Inclusion by
Means of an Indeterminate

Theorem. The double inclusion

b < x < a

is equivalent to the equality x = au + bu′ together with the condition (b < a), u
being a term absolutely indeterminate.

Demonstration.�Let us develop an equality in question,

x(a′u + b′u′) + x′(au + bu′) = 0,

(a′x + ax′)u + (b′x + bx′)u′ = 0.

Eliminating u from it,
a′b′x + abx′ = 0.

This equality is equivalent to the double inclusion

ab < x < a + b.

40According to the remark in the preceding note, it is clear that we have
∏
v

(a = bu) = (a = b = 0),
∏
v

(a + v = b) = (a = b = 1),

since the equalities a�ected by the sign ∏ may be likewise veri�ed by the values
u = 0, u = 1 and v = 0, v = 1.

If we wish to know within what limits the indeterminates u and v are variable, it is su�cient
to solve with respect to them the equations

(a < b) = (a = bu), (a < b) = (a + v = b),

or
(ab′ = a′bu + ab′ + au′, ab′ = ab′ + b′v + a′bv′,

or
a′bu + abu′ = 0, a′b′v + a′bv′ = 0,

from which (by a formula to be demonstrated later on) we derive the solutions
u = ab + w(a + b′), v = a′b + w(a + b),

or simply
u = ab + wb′, v = a′b + wa,

w being absolutely indeterminate. We would arrive at these solutions simply by asking: By
what term must we multiply b in order to obtain a? By a term which contains ab plus any
part of b′. What term must we add to a in order to obtain b? A term which contains a′b plus
any part of a. In short, u can vary between ab and a + b′, v between a′b and a + b.
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But, by hypothesis, we have

(b < a) = (ab = b) = (a + b = a).

The double inclusion is therefore reduced to

b < x < a.

So, whatever the value of u, the equality under consideration involves the
double inclusion. Conversely, the double inclusion involves the equality, what-
ever the value of x may be, for it is equivalent to

a′x + bx′ = 0,

and then the equality is simpli�ed and reduced to

ax′u + b′xu′ = 0.

We can always derive from this the value of u in terms of x, for the resultant
(ab′xx′ = 0) is identically veri�ed. The solution is given by the double inclusion

b′x < u < a′ + x.

Remark.�There is no contradiction between this result, which shows that
the value of u lies between certain limits, and the previous assertion that u is
absolutely indeterminate; for the latter assumes that x is any value that will
verify the double inclusion, while when we evaluate u in terms of x the value of
x is supposed to be determinate, and it is with respect to this particular value
of x that the value of u is subjected to limits.41

In order that the value of u should be completely determined, it is necessary
and su�cient that we should have

b′x = a′ + x,

that is to say,
b′xax′ + (b + x′)(a′ + x) = 0

or
bx + a′x′ = 0.

Now, by hypothesis, we already have

a′x + bx′ = 0.

If we combine these two equalities, we �nd

(a + b = 0) = (a = 1)(b = 0).
41Moreover, if we substitute for x its inferior limit b in the inferior limit of u, this limit

becomes bb′ = 0; and, if we substitute for x its superior limit a in the superior limit of u, this
limit becomes a + a′ = 1.
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This is the case when the value of x is absolutely indeterminate, since it lies
between the limits 0 and 1.

In this case we have
u = b′x = a + x = x.

In order that the value of u be absolutely indeterminate, it is necessary and
su�cient that we have at the same time

b′x = 0, a′ + x = 1,

or
b′x + ax′ = 0,

that is
a < x < b.

Now we already have, by hypothesis,

b < x < a;

so we may infer
b = x = a.

This is the case in which the value of x is completely determinate.

0.36 Solution of an Equation Involving One Un-
known Quantity

The solution of the equation
ax + bx′ = 0

may be expressed in the form

x = a′u + bu′,

u being an indeterminate, on condition that the resultant of the equation be
veri�ed; for we can prove that this equality implies the equality

ab′x + a′bx′ = 0,

which is equivalent to the double inclusion

a′b < x < a′ + b.

Now, by hypothesis, we have

(ab = 0) = (a′b = b) = (a′ + b = a′).

Therefore, in this hypothesis, the proposed solution implies the double in-
clusion

b < x < a′;
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which is equivalent to the given equation.
Remark.�In the same hypothesis in which we have

(ab = 0) = (b < a′),

we can always put this solution in the simpler but less symmetrical forms

x = b + a′u, x = a′(b + u).

For
1. We have identically

b = bu + bu′.

Now
(b < a′) < (bu < a′u).

Therefore
(x = bu′ + a′u) = (x = b + a′u).

2. Let us now demonstrate the formula

x = a′b + a′u.

Now
a′b = b.

Therefore
x = b + a′u

which may be reduced to the preceding form.
Again, we can put the same solution in the form

x = a′b + u(ab + a′b′),

which follows from the equation put in the form

ab′x + a′bx′ = 0,

if we note that
a′ + b = ab + a′b + a′b′

and that
ua′b < a′b.

This last form is needlessly complicated, since, by hypothesis,

ab = 0.

Therefore there remains
x = a′b + ua′b′

which again is equivalent to
x = b + ua′,
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since
a′b = b and a′ = a′b + a′b′.

Whatever form we give to the solution, the parameter u in it is absolutely
indeterminate, i.e., it can receive all possible values, including 0 and 1; for when
u = 0 we have

x = b,

and when u = 1 we have
x = a′,

and these are the two extreme values of x.
Now we understand that x is determinate in the particular case in which

a′ = b, and that, on the other hand, it is absolutely indeterminate when

b = 0, a′ = 1, (or a = 0).

Summing up, the formula

x = a′u + bu′

replaces the �limited� variable x (lying between the limits a′ and b) by the
�unlimited� variable u which can receive all possible values, including 0 and 1.

Remark.42�The formula of solution

x = a′x + bx′

is indeed equivalent to the given equation, but not so the formula of solution

x = a′u + bu′

as a function of the indeterminate u. For if we develop the latter we �nd

ab′x + a′bx′ + ab(xu + x′u′) + a′b′(xu′ + x′u) = 0,

and if we compare it with the developed equation

ab + ab′x + a′bx′ = 0,

we ascertain that it contains, besides the solution, the equality

ab(xu′ + x′u) = 0,

and lacks of the same solution the equality

a′b′(xu′ + x′u) = 0.

Moreover these two terms disappear if we make

u = x

42 Poretsky. Sept lois, Chaps. XXXIII and XXXIV.
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and this reduces the formula to

x = a′x + bx′.

From this remark, Poretsky concluded that, in general, the solution of
an equation is neither a consequence nor a cause of the equation. It is a cause
of it in the particular case in which

ab = 0,

and it is a consequence of it in the particular case in which

(a′b′ = 0) = (a + b = i).

But if ab is not equal to 0, the equation is unsolvable and the formula of
solution absurd, which fact explains the preceding paradox. If we have at the
same time

ab = 0 and a + b = 1,

the solution is both consequence and cause at the same time, that is to say, it
is equivalent to the equation. For when a = b the equation is determinate and
has only the one solution

x = a′ = b.

Thus, whenever an equation is solvable, its solution is one of its causes; and,
in fact, the problem consists in �nding a value of x which will verify it, i.e.,
which is a cause of it.

To sum up, we have the following equivalence:

(ax + bx′ = 0) = (ab = 0)
∑

u

(x = a′u + bu′)

which includes the following implications:

(ax + bx′ = 0) < (ab = 0),

(ax + bx′ = 0) <
∑

u

(x = a′u + bu′),

(ab = 0)
∑

u

(x = a′u + bu′) < (ax + bx′ = 0).

0.37 Elimination of Several Unknown Quantities
We shall now consider an equation involving several unknown quantities and
suppose it reduced to the normal form, i.e., its �rst member developed with
respect to the unknown quantities, and its second member zero. Let us �rst
concern ourselves with the problem of elimination. We can eliminate the un-
known quantities either one by one or all at once.
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For instance, let

φ(x, y, z) = axyz + bxyz′ + cxy′z + dxy′z′

+ fx′yz + gx′yz′ + hx′y′z + kx′y′z′ = 0
(5)

be an equation involving three unknown quantities.
We can eliminate z by considering it as the only unknown quantity, and we

obtain as resultant

(axy + cxy′ + fx′y + hx′y′)(bxy + dxy′ + gx′y + kx′y′) = 0

or

(6) abxy + cdxy′ + fgx′y + hkx′y′ = 0.

If equation (5) is possible, equation (6) is possible as well; that is, it is veri�ed
by some values of x and y. Accordingly we can eliminate y from the equation
by considering it as the only unknown quantity, and we obtain as resultant

(abx + fgx′)(cdx + hkx′) = 0

or

(7) abcdx + fghkx′ = 0.

If equation (5) is possible, equation (7) is also possible;. that is, it is veri�ed
by some values of x. Hence we can eliminate x from it and obtain as the �nal
resultant,

abcd · fghk = 0

which is a consequence of (5), independent of the unknown quantities. It is
evident, by the principle of symmetry, that the same resultant would be obtained
if we were to eliminate the unknown quantities in a di�erent order. Moreover
this result might have been foreseen, for since we have (�0.28)

abcdfghk < φ(x, y, z),

φ(x, y, z) can vanish only if the product of its coe�cients is zero:

[φ(x, y, z) = 0] < (abcdfghk = 0).

Hence we can eliminate all the unknown quantities at once by equating to
0 the product of the coe�cients of the function developed with respect to all
these unknown quantities.

We can also eliminate some only of the unknown quantities at one time. To
do this, it is su�cient to develop the �rst member with respect to these unknown
quantities and to equate the product of the coe�cients of this development to 0.
This product will generally contain the other unknown quantities. Thus the
resultant of the elimination of z alone, as we have seen, is

abxy + cdxy′ + fgx′y + hkx′y′ = 0
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and the resultant of the elimination of y and z is

abcdx + fghkx′ = 0.

These partial resultants can be obtained by means of the following practical
rule: Form the constituents relating to the unknown quantities to be retained;
give each of them, for a coe�cient, the product of the coe�cients of the con-
stituents of the general development of which it is a factor, and equate the sum
to 0.

0.38 Theorem Concerning the Values of a Func-
tion

All the values which can be assumed by a function of any number of variables
f(x, y, z . . .) are given by the formula

abc . . . k + u(a + b + c + . . . + k),

in which u is absolutely indeterminate, and a, b, c . . . , k are the coe�cients of
the development of f .

Demonstration.�It is su�cient to prove that in the equality

f(x, y, z . . .) = abc . . . k + u(a + b + c + . . . + k)

u can assume all possible values, that is to say, that this equality, considered as
an equation in terms of u, is indeterminate.

In the �rst place, for the sake of greater homogeneity, we may put the second
member in the form

u′abc . . . k + u(a + b + c + . . . + k),

for
abc . . . k = uabc . . . k + u′abc . . . k,

and
uabc . . . k < u(a + b + c + . . . + k).

Reducing the second member to 0 (assuming there are only three variables
x, y, z)

(axyz + bxyz′ + cxy′z + . . . + kx′y′z′)
× [ua′b′c′ . . . k′ + u′(a′ + b′ + c′ + . . . + k′)]
+ (a′xyz + b′xyz′ + c′xy′z + . . . + k′x′y′z′)
× [u(a + b + c + . . . + k) + u′abc . . . k] = 0,

or more simply

u(a + b + c + . . . + k)(a′xyz + b′xyz + c′xy′z + . . . + k′x′y′z′)
+ u′(a′ + b′ + c′ + . . . + k′)(axyz + bxyz + . . . + kx′yz) = 0.
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If we eliminate all the variables x, y, z, but not the indeterminate u, we get
the resultant

u(a + b + c + . . . + k)a′b′c′ . . . k′

+ u′(a′ + b′ + c′ + . . . + k′)abc . . . k = 0.

Now the two coe�cients of u and u′ are identically zero; it follows that u is
absolutely indeterminate, which was to be proved.43

From this theorem follows the very important consequence that a function
of any number of variables can be changed into a function of a single variable
without diminishing or altering its �variability�.

Corollary.�A function of any number of variables can become equal to either
of its limits.

For, if this function is expressed in the equivalent form

abc . . . k + u(a + b + c + . . . + k),

it will be equal to its minimum (abc . . . k) when u = 0, and to its maximum
(a + b + c + . . . + k) when u = 1.

Moreover we can verify this proposition on the primitive form of the function
by giving suitable values to the variables.

Thus a function can assume all values comprised between its two limits,
including the limits themselves. Consequently, it is absolutely indeterminate
when

abc . . . k = 0 and a + b + c + . . . + k = 1

at the same time, or
abc . . . k = 0 = a′b′c′ . . . k′.

0.39 Conditions of Impossibility and Indetermi-
nation

The preceding theorem enables us to �nd the conditions under which an equation
of several unknown quantities is impossible or indeterminate. Let f(x, y, z . . .)
be the �rst member supposed to be developed, and a, b, c . . . , k its coe�cients.
The necessary and su�cient condition for the equation to be possible is

abc . . . k = 0.

For, (1) if f vanishes for some value of the unknowns, its inferior limit
abc . . . k must be zero; (2) if abc . . . k is zero, f may become equal to it, and
therefore may vanish for certain values of the unknowns.

The necessary and su�cient condition for the equation to be indeterminate
(identically veri�ed) is

a + b + c . . . + k = 0.

43 Whitehead, Universal Algebra, Vol. I, �33 (4).
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For, (1) if a + b + c + . . . + k is zero, since it is the superior limit of f , this
function will always and necessarily be zero; (2) if f is zero for all values of the
unknowns, a + b + c + . . . + k will be zero, for it is one of the values of f .

Summing up, therefore, we have the two equivalences
∑

[f(x, y, z, . . .) = 0] = (abc . . . k = 0).
∏

[f(x, y, z, . . .) = 0] = (a + b + c . . . + k = 0).

The equality abc . . . k = 0 is, as we know, the resultant of the elimination of
all the unknowns; it is the consequence that can be derived from the equation
(assumed to be veri�ed) independently of all the unknowns.

0.40 Solution of Equations Containing Several Un-
known Quantities

On the other hand, let us see how we can solve an equation with respect to its
various unknowns, and, to this end, we shall limit ourselves to the case of two
unknowns

axy + bxy′ + cx′y + dx′y′ = 0.

First solving with respect to x,

x = (a′y + b′y′)x + (cy + dy′)x′.

The resultant of the elimination of x is

acy + bdy′ = 0.

If the given equation is true, this resultant is true.
Now it is an equation involving y only; solving it,

y = (a′ + c′)y + bdy′.

Had we eliminated y �rst and then x, we would have obtained the solution

y = (a′x + c′x′)y + (bx + dx′)y′

and the equation in x
abx + cdx′ = 0,

whence the solution
x = (a′ + b′)x + cdx′.

We see that the solution of an equation involving two unknown quantities
is not symmetrical with respect to these unknowns; according to the order in
which they were eliminated, we have the solution

x = (a′y + b′y′)x + (cy + dy′)x′,
y = (a′ + c′)y + bdy′,
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or the solution

x = (a′ + b′)x + cdx,

y = (a′x + c′x′)y + (bx + dx′)y′.

If we replace the terms x, y, in the second members by indeterminates u, v,
one of the unknowns will depend on only one indeterminate, while the other
will depend on two. We shall have a symmetrical solution by combining the two
formulas,

x = (a′ + b′)u + cdu′,

y = (a′ + c′)v + bdv′,

but the two indeterminates u and v will no longer be independent of each other.
For if we bring these solutions into the given equation, it becomes

abcd + ab′c′uv + a′bd′uv′ + a′cd′u′v + b′c′du′v′ = 0

or since, by hypothesis, the resultant abcd = 0 is veri�ed,

ab′c′uv + a′bd′uv′ + a′cdu′v + b′c′du′v′ = 0.

This is an �equation of condition� which the indeterminates u and v must
verify; it can always be veri�ed, since its resultant is identically true,

ab′c′ · a′bd′ · a′cd′ · b′c′d = aa′ · bb′ · cc′ · dd′ = 0,

but it is not veri�ed by any pair of values attributed to u and v.
Some general symmetrical solutions, i.e., symmetrical solutions in which

the unknowns are expressed in terms of several independent indeterminates,
can however be found. This problem has been treated by Schröder 44, by
Whitehead 45 and by Johnson. 46

This investigation has only a purely technical interest; for, from the practical
point of view, we either wish to eliminate one or more unknown quantities (or
even all), or else we seek to solve the equation with respect to one particular
unknown. In the �rst case, we develop the �rst member with respect to the
unknowns to be eliminated and equate the product of its coe�cients to 0. In
the second case we develop with respect to the unknown that is to be extricated
and apply the formula for the solution of the equation of one unknown quantity.
If it is desired to have the solution in terms of some unknown quantities or in
terms of the known only, the other unknowns (or all the unknowns) must �rst
be eliminated before performing the solution.

44Algebra der Logik, Vol. I, �24.
45Universal Algebra, Vol. I, ��35�37.
46�Sur la théorie des égalités logiques�, Bibl. du Cong. intern. de Phil., Vol. III, p. 185

(Paris, 1901).
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0.41 The Problem of Boole
According to Boole the most general problem of the algebra of logic is the
following47:

Given any equation (which is assumed to be possible)

f(x, y, z, . . .) = 0,

and, on the other hand, the expression of a term t in terms of the variables
contained in the preceding equation

t = ϕ(x, y, z, . . .)

to determine the expression of t in terms of the constants contained in f and in
ϕ.

Suppose f and ϕ developed with respect to the variables x, y, z . . . and let
p1, p2, p3, . . . be their constituents:

f(x, y, z, . . .) = Ap1 + Bp2 + Cp3 + . . . ,

φ(x, y, z, . . .) = ap1 + bp2 + cp3 + . . . .

Then reduce the equation which expresses t so that its second member will
be 0:

(tφ′ + t′φ = 0) = [(a′p1 + b′p2 + c′p3 + . . .)t
+ (ap1 + bp2 + cp3 + . . .)t′ = 0].

Combining the two equations into a single equation and developing it with
respect to t:

[(A + a′)p1 + (B + b′)p2 + (C + c′)p3 + . . .]t
+ [(A + a)p1 + (B + b)p2 + (C + c)p3 + . . .]t′ = 0.

This is the equation which gives the desired expression of t. Eliminating t,
we obtain the resultant

Ap1 + Bp2 + Cp3 + . . . = 0,

as we might expect. If, on the other hand, we wish to eliminate x, y, z, . . . (i.e.,
the constituents p1, p2, p3 . . .), we put the equation in the form

(A + a′t + at′)p1 + (B + b′t + bt′)p2 + (C + c′t + ct′)p3 + . . . = 0,

and the resultant will be

(A + a′t + at′)(B + b′t + bt′)(C + c′t + ct′) . . . = 0,

47Laws of Thought, Chap. IX, �8.
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an equation that contains only the unknown quantity t and the constants of
the problem (the coe�cients of f and of ϕ). From this may be derived the
expression of t in terms of these constants. Developing the �rst member of this
equation

(A + a′)(B + b′)(C + c′) . . .× t + (A + a)(B + b)(C + c) . . .× t′ = 0.

The solution is

t = (A + a)(B + b)(C + c) . . . + u(A′a + B′b + C ′c + . . .).

The resultant is veri�ed by hypothesis since it is

ABC . . . = 0,

which is the resultant of the given equation

f(x, y, z, . . .) = 0.

We can see how this equation contributes to restrict the variability of t.
Since t was de�ned only by the function ϕ, it was determined by the double
inclusion

abc . . . < t < a + b + c + . . . .

Now that we take into account the condition f = 0, t is determined by the
double inclusion

(A + a)(B + b)(C + c) . . . < t < (A′a + B′b + C ′c + . . .).48

The inferior limit can only have increased and the superior limit diminished,
for

abc . . . < (A + a)(B + b)(C + c) . . .

and
A′a + B′b + C ′c . . . < a + b + c . . . .

The limits do not change if A = B = C = . . . = 0, that is, if the equation
f = 0 is reduced to an identity, and this was evident a priori.

0.42 The Method of Poretsky
The method of Boole and Schröder which we have heretofore discussed
is clearly inspired by the example of ordinary algebra, and it is summed up in
two processes analogous to those of algebra, namely the solution of equations
with reference to unknown quantities and elimination of the unknowns. Of these
processes the second is much the more important from a logical point of view,
and Boole was even on the point of considering deduction as essentially con-
sisting in the elimination of middle terms. This notion, which is too restricted,

48 Whitehead, Universal Algebra, p. 63.
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was suggested by the example of the syllogism, in which the conclusion results
from the elimination of the middle term, and which for a long time was wrongly
considered as the only type of mediate deduction.49

However this may be, Boole and Schröder have exaggerated the anal-
ogy between the algebra of logic and ordinary algebra. In logic, the distinction
of known and unknown terms is arti�cial and almost useless. All the terms
are�in principle at least�known, and it is simply a question, certain relations
between them being given, of deducing new relations (unknown or not explic-
itly known) from these known relations. This is the purpose of Poretsky's
method which we shall now expound. It may be summed up in three laws, the
law of forms, the law of consequences and the law of causes.

0.43 The Law of Forms
This law answers the following problem: An equality being given, to �nd for
any term (simple or complex) a determination equivalent to this equality. In
other words, the question is to �nd all the forms equivalent to this equality, any
term at all being given as its �rst member.

We know that any equality can be reduced to a form in which the second
member is 0 or 1; i.e., to one of the two equivalent forms

N = 0, N ′ = 1.

The function N is what Poretsky calls the logical zero of the given
equality; N ′ is its logical whole.50

Let U be any term; then the determination of U :

U = N ′U + NU ′

is equivalent to the proposed equality; for we know it is equivalent to the equality

(NU + NU ′ = 0) = (N = 0).

Let us recall the signi�cation of the determination

U = N ′U + NU ′.
49In fact, the fundamental formula of elimination

(ax + bx′ = 0) < (ab = 0)

is, as we have seen, only another form and a consequence of the principle of the syllogism

(b < x < a′) < (b < a′).

50They are called �logical� to distinguish them from the identical zero and whole, i.e., to
indicate that these two terms are not equal to 0 and 1 respectively except by virtue of the
data of the problem.
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It denotes that the term U is contained in N ′ and contains N . This is easily
understood, since, by hypothesis, N is equal to 0 and N ′ to 1. Therefore we
can formulate the law of forms in the following way:

To obtain all the forms equivalent to a given equality, it is su�cient to express
that any term contains the logical zero of this equality and is contained in its
logical whole.

The number of forms of a given equality is unlimited; for any term gives rise
to a form, and to a form di�erent from the others, since it has a di�erent �rst
member. But if we are limited to the universe of discourse determined by n
simple terms, the number of forms becomes �nite and determinate. For, in this
limited universe, there are 2n constituents. Now, all the terms in this universe
that can be conceived and de�ned are sums of some of these constituents. Their
number is, therefore, equal to the number of combinations that can be made
with 2n constituents, namely 22n (including 0, the combination of 0 constituent,
and 1, the combination of all the constituents). This will also be the number of
di�erent forms of any equality in the universe in question.

0.44 The Law of Consequences
We shall now pass to the law of consequences. Generalizing the conception
of Boole, who made deduction consist in the elimination of middle terms,
Poretsky makes it consist in the elimination of known terms (connaissances).
This conception is explained and justi�ed as follows.

All problems in which the data are expressed by logical equalities or inclu-
sions can be reduced to a single logical equality by means of the formula51

(A = 0)(B = 0)(C = 0) . . . = (A + B + C . . . = 0).

In this logical equality, which sums up all the data of the problem, we develop
the �rst member with respect to all the simple terms which appear in it (and
not with respect to the unknown quantities). Let n be the number of simple
terms; then the number of the constituents of the development of 1 is 2n. Let
m (≤ 2n) be the number of those constituents appearing in the �rst member of
the equality. All possible consequences of this equality (in the universe of the n
terms in question) may be obtained by forming all the additive combinations of
these m constituents, and equating them to 0; and this is done in virtue of the
formula

(A + B = 0) < (A = 0).

We see that we pass from the equality to any one of its consequences by
suppressing some of the constituents in its �rst member, which correspond to
as many elementary equalities (having 0 for second member), i.e., as many as
there are data in the problem. This is what is meant by �eliminating the known
terms�.

51We employ capitals to denote complex terms (logical functions) in contrast to simple
terms denoted by small letters (a, b, c, . . .)
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The number of consequences that can be derived from an equality (in the
universe of n terms with respect to which it is developed) is equal to the number
of additive combinations that may be formed with its m constituents; i.e., 2m.
This number includes the combination of 0 constituents, which gives rise to the
identity 0 = 0, and the combination of the m constituents, which reproduces
the given equality.

Let us apply this method to the equation with one unknown quantity
ax + bx′ = 0.

Developing it with respect to the three terms a, b, x:
(abx + ab′x + abx′ + a′bx′ = 0)

= [ab(x + x′) + ab′x + a′bx′ = 0]
= (ab = 0)(ab′x = 0)(a′bx′ = 0).

Thus we �nd, on the one hand, the resultant ab = 0, and, on the other hand,
two equalities which may be transformed into the inclusions

x < a′ + b, a′b < x.

But by the resultant which is equivalent to b < a′, we have
a′ + b′ = a′, a′b = b.

This consequence may therefore be reduced to the double inclusion
x < a′, b < x,

that is, to the known solution.
Let us apply the same method to the premises of the syllogism

(a < b)(b < c).

Reduce them to a single equality
(a < b) = (ab′ = 0), (b < c) = (bc′ = 0), (ab′ + bc′ = 0),

and seek all of its consequences.
Developing with respect to the three terms a, b, c:

abc′ + ab′c + ab′c′ + a′bc′ = 0.

The consequences of this equality, which contains four constituents, are 16
(24) in number as follows:

(abc′ = 0) = (ab < c);1.
(ab′c = 0) = (ac < b);2.

(ab′c′ = 0) = (a < b + c);3.
(a′bc′ = 0) = (b < a + c);4.

(abc′ + ab′c = 0) = (a < bc + b′c′);5.
(abc′ + ab′c′ = 0) = (ac′ = 0) = (a < c).6.
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This is the traditional conclusion of the syllogism.52

7. (abc′ + a′bc′ = 0) = (bc′ = 0) = (b < c).

This is the second premise.

8. (ab′c + ab′c′ = 0) = (ab′ = 0) = (a < b).

This is the �rst premise.

(ab′c + a′bc′ = 0) = (ac < b < a + c);9.
(ab′c′ + a′bc′ = 0) = (ab′ + a′b < c);10.

(abc′ + ab′c + ab′c′ = 0) = (ab′ + ac′ = 0) = (a < bc);11.
(abc′ + ab′c + a′bc′ = 0) = (ab′c + bc′ = 0) = (ac < b < c);12.
(abc′ + ab′c′ + a′bc′ = 0) = (ac′ + bc′ = 0) = (a + b < c);13.

(ab′c + ab′c′ + a′bc′ = 0) = (ab′ + a′bc′ = 0) = (a < b < a + c).14.

The last two consequences (15 and 16) are those obtained by combining
0 constituent and by combining all; the �rst is the identity

15. 0 = 0,

which con�rms the paradoxical proposition that the true (identity) is implied
by any proposition (is a consequence of it); the second is the given equality itself

16. ab′ + bc′ = 0,

which is, in fact, its own consequence by virtue of the principle of identity. These
two consequences may be called the �extreme consequences� of the proposed
equality. If we wish to exclude them, we must say that the number of the
consequences properly so called of an equality of m constituents is 2m − 2.

0.45 The Law of Causes
The method of �nding the consequences of a given equality suggests directly
the method of �nding its causes, namely, the propositions of which it is the
consequence. Since we pass from the cause to the consequence by eliminating
known terms, i.e., by suppressing constituents, we will pass conversely from the
consequence to the cause by adjoining known terms, i.e., by adding constituents
to the given equality. Now, the number of constituents that may be added to

52It will be observed that this is the only consequence (except the two extreme consequences
[see the text below]) independent of b; therefore it is the resultant of the elimination of that
middle term.
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it, i.e., that do not already appear in it, is 2n − m. We will obtain all the
possible causes (in the universe of the n terms under consideration) by forming
all the additive combinations of these constituents, and adding them to the �rst
member of the equality in virtue of the general formula

(A + B = 0) < (A = 0),

which means that the equality (A = 0) has as its cause the equality (A+B = 0),
in which B is any term. The number of causes thus obtained will be equal to
the number of the aforesaid combinations, or 22n −m.

This method may be applied to the investigation of the causes of the premises
of the syllogism

(a < b)(b < c)

which, as we have seen, is equivalent to the developed equality

abc′ + ab′c + ab′c′ + a′bc′ = 0.

This equality contains four of the eight (23) constituents of the universe of
three terms, the four others being

abc, a′bc, a′b′c, a′b′c′.

The number of their combinations is 16 (24), this is also the number of the
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causes sought, which are:
(abc + abc′ + ab′c + ab′c′ + a′bc′ = 0)

= (a + bc′ = 0) = (a = 0)(b < c);
(8)

(abc′ + ab′c + ab′c′ + a′bc + a′bc′ = 0)
= (abc′ + ab′ + a′b = 0) = (ab < c)(a = b);

(9)

(abc′ + ab′c + ab′c′ + a′bc′ + a′b′c = 0)
= (bc′ + b′c + ab′c′ = 0) = (b = c)(a < b + c);

(10)

(abc′ + ab′c + ab′c′ + a′bc′ + a′b′c′ = 0)
= (c′ + ab′ = 0) = (c = 1)(a < b);

(11)

(abc + abc′ + ab′c + ab′c′ + a′bc + a′bc′ = 0)
= (a + b = 0) = (a = 0)(b = 0);

(12)

(abc + abc′ + ab′c + ab′c′ + a′bc′ + a′b′c = 0)
= (a + bc′ + b′c = 0) = (a = 0)(b = c);

(13)

(abc + abc′ + ab′c + ab′c′ + a′bc′ + a′b′c′ = 0)
= (a + c′ = 0) = (a = 0)(c = 1)53;

(14)

(abc′ + ab′c + ab′c′ + a′bc + a′bc′ + a′b′c = 0)
= (ac′ + a′c + ab′c + a′bc′ = 0)
= (a = c)(ac < b < a + c) = (a = b = c);

(15)

(abc′ + ab′c + ab′c′ + a′bc + a′bc′ + a′b′c = 0)
= (c′ + ab′ + a′b = 0) = (c = 1)(a = b);

(16)

(abc′ + ab′c + ab′c′ + a′bc′ + a′b′c + a′b′c′ = 0)
= (b′ + c′ = 0) = (b = c = 1).

(17)

Before going any further, it may be observed that when the sum of certain
constituents is equal to 0, the sum of the rest is equal to 1. Consequently, instead
of examining the sum of seven constituents obtained by ignoring one of the four
missing constituents, we can examine the equalities obtained by equating each
of these constituents to 1:

(a′b′c′ = 1) = (a + b + c = 0) = (a = b = c = 0);(18)
(a′b′c = 1) = (a + b + c′ = 0) = (a = b = 0)(c = 1);(19)
(a′bc = 1) = (a + b′ + c′ = 0) = (a = 0)(b = c = 1);(20)
(abc = 1) = (a = b = c = 1).(21)

Note that the last four causes are based on the inclusion
0 < 1.

The last two causes (22 and 23) are obtained either by adding all the miss-
ing constituents or by not adding any. In the �rst case, the sum of all the
constituents being equal to 1, we �nd
(22) 1 = 0,
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that is, absurdity, and this con�rms the paradoxical proposition that the false
(the absurd) implies any proposition (is its cause). In the second case, we obtain
simply the given equality, which thus appears as one of its own causes (by the
principle of identity):

(23) ab′ + bc′ = 0.

If we disregard these two extreme causes, the number of causes properly so
called will be

22n−m − 2.

0.46 Forms of Consequences and Causes
We can apply the law of forms to the consequences and causes of a given equality
so as to obtain all the forms possible to each of them. Since any equality is
equivalent to one of the two forms

N = 0, N ′ = 1,

each of its consequences has the form54

NX = 0, or N ′ + X ′ = 1,

and each of its causes has the form

N + X = 0, or N ′X ′ = 1.

In fact, we have the following formal implications:

(N + X = 0) < (N = 0) < (NX = 0),
(N ′X ′ = 1) < (N ′ = 1) = (N ′ + X ′ = 1).

Applying the law of forms, the formula of the consequences becomes

U = (N ′ + X ′)U + NXU ′,

and the formula of the causes

U = N ′X ′U + (N + X)U ′;
54In �0.44 we said that a consequence is obtained by taking a part of the constituents of

the �rst member N , and not by multiplying it by a term X; but it is easily seen that this
amounts to the same thing. For, suppose that X (like N) be developed with respect to the
n terms of discourse. It will be composed of a certain number of constituents. To perform
the multiplication of N by X, it is su�cient to multiply all their constituents each by each.
Now, the product of two identical constituents is equal to each of them, and the product of
two di�erent constituents is 0. Hence the product of N by X becomes reduced to the sum of
the constituents common to N and X, which is, of course, contained in N . So, to multiply N
by an arbitrary term is tantamount to taking a part of its constituents (or all, or none).
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or, more generally, since X and X ′ are indeterminate terms, and consequently
are not necessarily the negatives of each other, the formula of the consequences
will be

U = (N ′ + X)U + NY U ′,

and the formula of the causes

U = N ′XU + (N + Y )U ′.

The �rst denotes that U is contained in (N ′ + X) and contains NY ; which
indeed results, a fortiori, from the hypothesis that U is contained in N ′ and
contains N .

The second formula denotes that U is contained in N ′X and contains N ′+Y
whence results, a fortiori, that U is contained in N ′ and contains N .

We can express this rule verbally if we agree to call every class contained
in another a sub-class, and every class that contains another a super-class. We
then say: To obtain all the consequences of an equality (put in the form U =
N ′U + NU ′), it is su�cient to substitute for its logical whole N ′ all its super-
classes, and, for its logical zero N, all its sub-classes. Conversely, to obtain all
the causes of the same equality, it is su�cient to substitute for its logical whole
all its sub-classes, and for its logical zero, all its super-classes.

0.47 Example: Venn's Problem
The members of the administrative council of a �nancial society are either bond-
holders or shareholders, but not both. Now, all the bondholders form a part of
the council. What conclusion must we draw?

Let a be the class of the members of the council; let b be the class of the
bondholders and c that of the shareholders. The data of the problem may be
expressed as follows:

a < bc′ + b′c, b < a.

Reducing to a single developed equality,

a(bc = b′c′) = 0, a′b = 0,

abc + ab′c′ + a′bc + a′bc′ = 0.(24)

This equality, which contains 4 of the constituents, is equivalent to the fol-
lowing, which contains the four others,

(25) abc′ + ab′c + a′b′c + a′b′c′ = 1.

This equality may be expressed in as many di�erent forms as there are classes
in the universe of the three terms a, b, c.

a = abc′ + ab′c + a′bc + a′bc′,Ex. 1.
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that is,

b < a < bc′ + b′c,

b = abc′ + ab′c = ac′;Ex. 2.
c = ab′c + a′b′c + ab′c′ + a′bc′Ex. 3.

that is,

ab′ + a′b < c < b′.

These are the solutions obtained by solving equation (24) with respect to a,
b, and c.

From equality (24) we can derive 16 consequences as follows :

abc = 0;1.
(ab′c′ = 0) = (a < b + c);2.
(a′bc = 0) = (bc < a);3.
(a′bc = 0) = (b < a + c);4.

(abc + ab′c′ = 0) = (a < bc′ + b′c) [1st premise];5.
(abc + a′bc = 0) = (bc = 0);6.
(abc + a′bc′ = 0) = (b < ac′ + a′c);7.
(ab′c′ + a′bc = 0) = (bc < a < b + c);8.
(ab′c′ + a′bc′ = 0) = (ab′ + a′b < c);9.
(a′bc + a′bc′ = 0) = (a′b = 0) [2d premise];10.

(abc + ab′c′ + a′bc = 0) = (bc + ab′c′ = 0);11.
abc + ab′c + a′bc′ = 0;12.

(abc + a′bc + a′bc′ = 0) = (bc + a′bc′) = 0;13.
ab′c′ + a′bc + a′bc′ = 0.14.

The last two consequences, as we know, are the identity (0 = 0) and the
equality (24) itself. Among the preceding consequences will be especially noted
the 6th (bc = 0), the resultant of the elimination of a, and the 10th (a′b = 0),
the resultant of the elimination of c. When b is eliminated the resultant is the
identity

[(a′ + c)ac′ = 0] = (0 = 0).

Finally, we can deduce from the equality (24) or its equivalent (25) the
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following 16 causes:

(abc′ = 1) = (a = 1)(b = 1)(c = 0);1.
(ab′c = 1) = (a = 1)(b = 0)(c = 1);2.
(a′b′c = 1) = (a = 0)(b = 0)(c = 1);3.
(a′b′c′ = 1) = (a = 0)(b = 0)(c = 0);4.

(abc′ + ab′c = 1) = (a = 1)(b′ = c);5.
(abc′ + a′b′c = 1) = (a = b = c′);6.
(abc′ + a′b′c′ = 1) = (c = 0)(a = b);7.
(ab′c + a′b′c = 1) = (b = 0)(c = 1);8.
(ab′c + a′b′c′ = 1) = (b = 0)(a = c);9.
(a′b′c + a′b′c′ = 1) = (a = 0)(b = 0);10.

(abc′ + ab′c + a′b′c = 1) = (b = c′)(c′ < a);11.
(abc′ + ab′c + a′b′c′ = 1) = (bc = 0)(a = b + c);12.
(abc′ + a′b′c + a′b′c′ = 1) = (ac = 0)(a = b);13.
(ab′c + a′b′c + a′b′c′ = 1) = (b = o)(a < c).14.

The last two causes, as we know, are the equality (24) itself and the absurdity
(1 = 0). It is evident that the cause independent of a is the 8th (b = 0)(c = 1),
and the cause independent of c is the 10th (a = 0)(b = 0). There is no cause,
properly speaking, independent of b. The most �natural� cause, the one which
may be at once divined simply by the exercise of common sense, is the 12th:

(bc = 0)(a = b + c).

But other causes are just as possible; for instance the 9th (b = 0)(a = c), the
7th (c = 0)(a = b), or the 13th (ac = 0)(a = b).

We see that this method furnishes the complete enumeration of all possible
cases. In particular, it comprises, among the forms of an equality, the solutions
deducible therefrom with respect to such and such an �unknown quantity�, and,
among the consequences of an equality, the resultants of the elimination of such
and such a term.

0.48 The Geometrical Diagrams of Venn
Poretsky's method may be looked upon as the perfection of the methods of
Stanley Jevons and Venn.

Conversely, it �nds in them a geometrical and mechanical illustration, for
Venn's method is translated in geometrical diagrams which represent all the
constituents, so that, in order to obtain the result, we need only strike out
(by shading) those which are made to vanish by the data of the problem. For
instance, the universe of three terms a, b, c, represented by the unbounded plane,
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Figure 1:

is divided by three simple closed contours into eight regions which represent the
eight constituents (Fig. 1).

To represent geometrically the data of Venn's problem we must strike out
the regions abc, ab′c′, a′bc and a′bc′; there will then remain the regions abc′,
ab′c, a′b′c, and a′b′c′ which will constitute the universe relative to the problem,
being what Poretsky calls his logical whole (Fig. 2). Then every class will be
contained in this universe, which will give for each class the expression resulting
from the data of the problem. Thus, simply by inspecting the diagram, we see
that the region bc does not exist (being struck out); that the region b is reduced
to ab′c′ (hence to ab); that all a is b or c, and so on.

Figure 2:

This diagrammatic method has, however, serious inconveniences as a method
for solving logical problems. It does not show how the data are exhibited by
canceling certain constituents, nor does it show how to combine the remaining
constituents so as to obtain the consequences sought. In short, it serves only to
exhibit one single step in the argument, namely the equation of the problem;
it dispenses neither with the previous steps, i.e., �throwing of the problem into
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an equation� and the transformation of the premises, nor with the subsequent
steps, i.e., the combinations that lead to the various consequences. Hence it is
of very little use, inasmuch as the constituents can be represented by algebraic
symbols quite as well as by plane regions, and are much easier to deal with in
this form.

0.49 The Logical Machine of Jevons
In order to make his diagrams more tractable, Venn proposed a mechanical
device by which the plane regions to be struck out could be lowered and caused to
disappear. But Jevons invented a more complete mechanism, a sort of logical
piano. The keyboard of this instrument was composed of keys indicating the
various simple terms (a, b, c, d), their negatives, and the signs + and =. Another
part of the instrument consisted of a panel with movable tablets on which were
written all the combinations of simple terms and their negatives; that is, all the
constituents of the universe of discourse. Instead of writing out the equalities
which represent the premises, they are �played� on a keyboard like that of a
typewriter. The result is that the constituents which vanish because of the
premises disappear from the panel. When all the premises have been �played�,
the panel shows only those constituents whose sum is equal to 1, that is, forms
the universe with respect to the problem, its logical whole. This mechanical
method has the advantage over Venn's geometrical method of performing
automatically the �throwing into an equation�, although the premises must �rst
be expressed in the form of equalities; but it throws no more light than the
geometrical method on the operations to be performed in order to draw the
consequences from the data displayed on the panel.

0.50 Table of Consequences
But Poretsky's method can be illustrated, better than by geometrical and
mechanical devices, by the construction of a table which will exhibit directly all
the consequences and all the causes of a given equality. (This table is relative to
this equality and each equality requires a di�erent table). Each table comprises
the 2n classes that can be de�ned and distinguished in the universe of discourse
of n terms. We know that an equality consists in the annulment of a certain
number of these classes, viz., of those which have for constituents some of the
constituents of its logical zero N . Let m be the number of these latter con-
stituents, then the number of the subclasses of N is 2m which, therefore, is the
number of classes of the universe which vanish in consequence of the equality
considered. Arrange them in a column commencing with 0 and ending with N
(the two extremes). On the other hand, given any class at all, any preceding
class may be added to it without altering its value, since by hypothesis they
are null (in the problem under consideration). Consequently, by the data of the
problem, each class is equal to 2m classes (including itself). Thus, the assem-
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blage of the 2n classes of discourse is divided into 2n−m series of 2m classes, each
series being constituted by the sums of a certain class and of the 2m classes of
the �rst column (sub-classes of N). Hence we can arrange these 2m sums in the
following columns by making them correspond horizontally to the classes of the
�rst column which gave rise to them. Let us take, for instance, the very simple
equality a = b, which is equivalent to

ab′ + a′b = 0.

The logical zero (N) in this case is ab′ + a′b. It comprises two constituents
and consequently four sub-classes: 0, ab′, a′b, and ab′+a′b. These will compose
the �rst column. The other classes of discourse are ab, a′b′, ab + a′b′, and those
obtained by adding to each of them the four classes of the �rst column. In this
way, the following table is obtained:

0 ab a′b′ ab + a′b′

ab′ a b′ a + b′

a′b b a′ a′ + b
ab′ + a′b a + b a′ + b′ 1

By construction, each class of this table is the sum of those at the head of
its row and of its column, and, by the data of the problem, it is equal to each
of those in the same column. Thus we have 64 di�erent consequences for any
equality in the universe of discourse of 2 letters. They comprise 16 identities
(obtained by equating each class to itself) and 16 forms of the given equality,
obtained by equating the classes which correspond in each row to the classes
which are known to be equal to them, namely

0 = ab′ + a′b, ab = a + b, a′b′ = a′ + b′ ab + a′b′ = 1
a = b, b′ = a′, ab′ = a′b, a + b′ = a′ + b.

Each of these 8 equalities counts for two, according as it is considered as a
determination of one or the other of its members.

0.51 Table of Causes
The same table may serve to represent all the causes of the same equality in
accordance with the following theorem:

When the consequences of an equality N = 0 are expressed in the form of
determinations of any class U , the causes of this equality are deduced from the
consequences of the opposite equality, N = 1, put in the same form, by changing
U to U ′ in one of the two members.

For we know that the consequences of the equality N = 0 have the form

U = (N ′ + X)U + NY U ′,

and that the causes of the same equality have the form

U = N ′XU + (N + Y )U ′.
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Now, if we change U into U ′ in one of the members of this last formula, it
becomes

U = (N + X ′)U + N ′Y ′U ′,

and the accents of X and Y can be suppressed since these letters represent
indeterminate classes. But then we have the formula of the consequences of the
equality N ′ = 0 or N = 1.

This theorem being established, let us construct, for instance, the table of
causes of the equality a = b. This will be the table of the consequences of the
opposite equality a = b′, for the �rst is equivalent to

ab′ + a′b = 0,

and the second to

(ab + a′b′ = 0) = (ab′ + a′b = 1).

0 ab′ a′b ab′ + a′b
ab a b a + b
a′b′ b′ a′ a′ + b′

ab + a′b′ a + b′ a′ + b 1

To derive the causes of the equality a = b from this table instead of the con-
sequences of the opposite equality a = b′, it is su�cient to equate the negative
of each class to each of the classes in the same column. Examples are:

a′ + b′ = 0, a′ + b′ = a′b′, a′ + b′ = ab + a′b′,
a′ + b = a, a′ + b = b′, a′ + b = a + b′; . . . .

Among the 64 causes of the equality under consideration there are 16 ab-
surdities (consisting in equating each class of the table to its negative); and 16
forms of the equality (the same, of course, as in the table of consequences, for
two equivalent equalities are at the same time both cause and consequence of
each other).

It will be noted that the table of causes di�ers from the table of consequences
only in the fact that it is symmetrical to the other table with respect to the
principal diagonal (0, 1); hence they can be made identical by substituting the
word �row� for the word �column� in the foregoing statement. And, indeed,
since the rule of the consequences concerns only classes of the same column, we
are at liberty so to arrange the classes in each column on the rows that the rule
of the causes will be veri�ed by the classes in the same row.

It will be noted, moreover, that, by the method of construction adopted for
this table, the classes which are the negatives of each other occupy positions
symmetrical with respect to the center of the table. For this result, the sub-
classes of the class N ′ (the logical whole of the given equality or the logical zero
of the opposite equality) must be placed in the �rst row in their natural order
from 0 to N ′; then, in each division, must be placed the sum of the classes at
the head of its row and column.
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With this precaution, we may sum up the two rules in the following practical
statement:

To obtain every consequence of the given equality (to which the table relates)
it is su�cient to equate each class to every class in the same column; and, to
obtain every cause, it is su�cient to equate each class to every class in the row
occupied by its symmetrical class.

It is clear that the table relating to the equality N = 0 can also serve for
the opposite equality N = 1, on condition that the words �row� and �column�
in the foregoing statement be interchanged.

Of course the construction of the table relating to a given equality is useful
and pro�table only when we wish to enumerate all the consequences or the
causes of this equality. If we desire only one particular consequence or cause
relating to this or that class of the discourse, we make use of one of the formulas
given above.

0.52 The Number of Possible Assertions
If we regard logical functions and equations as developed with respect to all the
letters, we can calculate the number of assertions or di�erent problems that may
be formulated about n simple terms. For all the functions thus developed can
contain only those constituents which have the coe�cient 1 or the coe�cient
0 (and in the latter case, they do not contain them). Hence they are additive
combinations of these constituents; and, since the number of the constituents
is 2n, the number of possible functions is 22n . From this must be deducted
the function in which all constituents are absent, which is identically 0, leaving
22n −1 possible equations (255 when n = 3). But these equations, in their turn,
may be combined by logical addition, i.e., by alternation; hence the number of
their combinations is 222n−1−1, excepting always the null combination. This is
the number of possible assertions a�ecting n terms. When n = 2, this number is
as high as 32767.55 We must observe that only universal premises are admitted
in this calculus, as will be explained in the following section.

0.53 Particular Propositions
Hitherto we have only considered propositions with an a�rmative copula (i.e.,
inclusions or equalities) corresponding to the universal propositions of classi-

55 G. Peano, Calcolo geometrico (1888) p. x; Schröder, Algebra der Logik, Vol. II,
p. 144�148.
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cal logic.56 It remains for us to study propositions with a negative copula (non
inclusions or inequalities), which translate particular propositions57; but the cal-
culus of propositions having a negative copula results from laws already known,
especially from the formulas of De Morgan and the law of contraposition. We
shall enumerate the chief formulas derived from it.

The principle of composition gives rise to the following formulas:

(c ≮ ab) = (c ≮ a) + (c ≮ b),
(a + b ≮ c) = (a ≮ c) + (b ≮ c),

whence come the particular instances

(ab 6= 1) = (a 6= 1) + (b 6= 1),
(a + b 6= 0) = (a 6= 0) + (c 6= 0).

From these may be deduced the following important implications:

(a 6= 0) < (a + b 6= 0),
(a 6= 1) < (ab 6= 1).

From the principle of the syllogism, we deduce, by the law of transposition,

(a < b)(a 6= 0) < (b 6= 0),
(a < b)(b 6= 1) < (a 6= 1).

The formulas for transforming inclusions and equalities give corresponding
formulas for the transformation of non-inclusions and inequalities,

(a ≮ b) = (ab′ 6= 0) = (a′ + b 6= 1),
(a 6= b) = (ab′ + a′b 6= 0) = (ab + a′b′ + 1).

56The universal a�rmative, �All a's are b's�, may be expressed by the formulas

(a < b) = (a = ab) = (ab′ = 0) = (a′ + b = 1),

and the universal negative, �No a's are b's�, by the formulas

(a < b′) = (a = ab′) = (ab = 0) = (a′ + b′ = 1).

57For the particular a�rmative, �Some a's are b's�, being the negation of the universal
negative, is expressed by the formulas

(a ≮ b′) = (a 6= ab′) = (ab 6= 0) = (a′ + b′ 6= 1),

and the particular negative, �Some a's are not b's�, being the negation of the universal a�r-
mative, is expressed by the formulas

(a ≮ b) = (a 6= ab) = (ab′ 6= 0) = (a′ + b 6= 1).
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0.54 Solution of an Inequation with One Unknown
If we consider the conditional inequality (inequation) with one unknown

ax + bx 6= 0,

we know that its �rst member is contained in the sum of its coe�cients

ax + bx′ < a + b.

From this we conclude that, if this inequation is veri�ed, we have the in-
equality

a + b 6= 0.

This is the necessary condition of the solvability of the inequation, and the
resultant of the elimination of the unknown x. For, since we have the equivalence

∏
x

(ax + bx′ = 0) = (a + b = 0),

we have also by contraposition the equivalence
∑

x

(ax + bx′ 6= 0) = (a + b 6= 0).

Likewise, from the equivalence
∑

x

(ax + bx′ = 0) = (ab = 0)

we can deduce the equivalence
∏
x

(ax + bx′ 6= 0) = (ab 6= 0),

which signi�es that the necessary and su�cient condition for the inequation to
be always true is

(ab 6= 0);

and, indeed, we know that in this case the equation

(ax + bx′ = 0)

is impossible (never true).
Since, moreover, we have the equivalence

(ax + bx′ = 0) = (x = a′x + bx′),

we have also the equivalence

(ax + bx′ 6= 0) = (x 6= a′x + bx′).
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Notice the signi�cance of this solution:

(ax + bx′ 6= 0) = (ax 6= 0) + (bx′ 6= 0) = (x ≮ a′) + (b ≮ x).

�Either x is not contained in a′, or it does not contain b�. This is the negative
of the double inclusion

b < x < a.

Just as the product of several equalities is reduced to one single equality,
the sum (the alternative) of several inequalities may be reduced to a single
inequality. But neither several alternative equalities nor several simultaneous
inequalities can be reduced to one.

0.55 System of an Equation and an Inequation
We shall limit our study to the case of a simultaneous equality and inequality.
For instance, let the two premises be

(ax + bx′ = 0) (cx + dx′ 6= 0).

To satisfy the former (the equation) its resultant ab = 0 must be veri�ed.
The solution of this equation is

x = a′x + bx′.

Substituting this expression (which is equivalent to the equation) in the
inequation, the latter becomes

(a′c + ad)x + (bc + b′d)x′ 6= 0.

Its resultant (the condition of its solvability) is

(a′c + ad + bc + b′d 6= 0) = [(a′ + b)c + (a + b′)d 6= 0],

which, taking into account the resultant of the equality,

(ab = 0) = (a′ + b = a′) = (a + b′ = b′)

may be reduced to
a′c + b′d 6= 0.

The same result may be reached by observing that the equality is equivalent
to the two inclusions

(x < a′)(x′ < b′),

and by multiplying both members of each by the same term

(cx < a′c)(dx′ < b′d) < (cx + dx′ < a′c + b′d)
(cx + dx′ 6= 0) < (a′c + b′d 6= 0).
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This resultant implies the resultant of the inequality taken alone

c + d 6= 0,

so that we do not need to take the latter into account. It is therefore su�cient
to add to it the resultant of the equality to have the complete resultant of the
proposed system

(ab = 0)(a′c + b′d 6= 0).

The solution of the transformed inequality (which consequently involves the
solution of the equality) is

x 6= (a′c′ + ad′)x + (bc + b′d)x′.

0.56 Formulas Peculiar to the Calculus of Propo-
sitions.

All the formulas which we have hitherto noted are valid alike for propositions
and for concepts. We shall now establish a series of formulas which are valid
only for propositions, because all of them are derived from an axiom peculiar
to the calculus of propositions, which may be called the principle of assertion.

This axiom is as follows:

Ax. 10
(a = 1) = a.

P. I.: To say that a proposition a is true is to state the proposition itself. In
other words, to state a proposition is to a�rm the truth of that proposition.58

Corollary :
a′ = (a′ = 1) = (a = 0).

P. I.: The negative of a proposition a is equivalent to the a�rmation that
this proposition is false.

By Ax. 9 (�0.20), we already have

(a = 1)(a = 0) = 0,

�A proposition cannot be both true and false at the same time�, for

(Syll.) (a = 1)(a = 0) < (1 = 0) = 0.

But now, according to Ax. 10, we have

(a = 1) + (a = 0) = a + a′ = 1.

58We can see at once that this formula is not susceptible of a conceptual interpretation
(C. I.); for, if a is a concept, (a = 1) is a proposition, and we would then have a logical
equality (identity) between a concept and a proposition, which is absurd.
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�A proposition is either true or false�. From these two formulas combined
we deduce directly that the propositions (a = 1) and (a = 0) are contradictory,
i.e.,

(a 6= 1) = (a = 0), (a 6= 0) = (a = 1).

From the point of view of calculation Ax. 10 makes it possible to reduce
to its �rst member every equality whose second member is 1, and to transform
inequalities into equalities. Of course these equalities and inequalities must have
propositions as their members. Nevertheless all the formulas of this section
are also valid for classes in the particular case where the universe of discourse
contains only one element, for then there are no classes but 0 and 1. In short,
the special calculus of propositions is equivalent to the calculus of classes when
the classes can possess only the two values 0 and 1.

0.57 Equivalence of an Implication and an Alter-
native

The fundamental equivalence

(a < b) = (a′ + b = 1)

gives rise, by Ax. 10, to the equivalence

(a < b) = (a′ + b)

which is no less fundamental in the calculus of propositions. To say that a
implies b is the same as a�rming �not-a or b�, i.e., �either a is false or b is true.�
This equivalence is often employed in every day conversation.

Corollary.�For any equality, we have the equivalence

(a = b) = ab + a′b′.

Demonstration:

(a = b) = (a < b)(b < a) = (a′ + b)(b′ + a) = ab + a′b′

�To a�rm that two propositions are equal (equivalent) is the same as stating
that either both are true or both are false�.

The fundamental equivalence established above has important consequences
which we shall enumerate.

In the �rst place, it makes it possible to reduce secondary, tertiary, etc.,
propositions to primary propositions, or even to sums (alternatives) of elemen-
tary propositions. For it makes it possible to suppress the copula of any proposi-
tion, and consequently to lower its order of complexity. An implication (A < B),
in which A and B represent propositions more or less complex, is reduced to
the sum A′ + B, in which only copulas within A and B appear, that is, propo-
sitions of an inferior order. Likewise an equality (A = B) is reduced to the sum
(AB + A′B′) which is of a lower order.
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We know that the principle of composition makes it possible to combine
several simultaneous inclusions or equalities, but we cannot combine alternative
inclusions or equalities, or at least the result is not equivalent to their alternative
but is only a consequence of it. In short, we have only the implications

(a < c) + (b < c) < (ab < c),
(c < a) + (c < b) < (c < a + b),

which, in the special cases where c = 0 and c = 1, become

(a = 0) + (b = 0) < (ab = 0),
(a = 1) + (b = 1) < (a + b = 1).

In the calculus of classes, the converse implications are not valid, for, from
the statement that the class ab is null, we cannot conclude that one of the
classes a or b is null (they can be not-null and still not have any element in
common); and from the statement that the sum (a + b) is equal to 1 we cannot
conclude that either a or b is equal to 1 (these classes can together comprise all
the elements of the universe without any of them alone comprising all). But
these converse implications are true in the calculus of propositions

(ab < c) < (a < c) + (b < c),
(c < a + b) < (c < a) + (c < b);

for they are deduced from the equivalence established above, or rather we may
deduce from it the corresponding equalities which imply them,

(ab < c) = (a < c) + (b < c),(1)
(c < a + b) = (c < a) + (c < b).(2)

Demonstration:

(ab < c) = a′ + b′ + c,(1)
(a < c) + (b < c) = (a′ + c) + (b′ + c) = a′ + b′ + c;

(c < a + b) = c′ + a + b,(2)
(c < a) + (c < b) = (c′ + a) + (c′ + b) = c′ + a + b.

In the special cases where c = 0 and c = 1 respectively, we �nd

(ab = 0) = (a = 0) + (b = 0),(3)
(a + b = 1) = (a = 1) + (b = 1).(4)

P. I.: (1) To say that two propositions united imply a third is to say that
one of them implies this third proposition.

(2) To say that a proposition implies the alternative of two others is to say
that it implies one of them.
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(3) To say that two propositions combined are false is to say that one of
them is false.

(4) To say that the alternative of two propositions is true is to say that one
of them is true.

The paradoxical character of the �rst three of these statements will be noted
in contrast to the self-evident character of the fourth. These paradoxes are
explained, on the one hand, by the special axiom which states that a proposition
is either true or false; and, on the other hand, by the fact that the false implies
the true and that only the false is not implied by the true. For instance, if both
premises in the �rst statement are true, each of them implies the consequence,
and if one of them is false, it implies the consequence (true or false). In the
second, if the alternative is true, one of its terms must be true, and consequently
will, like the alternative, be implied by the premise (true or false). Finally, in
the third, the product of two propositions cannot be false unless one of them is
false, for, if both were true, their product would be true (equal to 1).

0.58 Law of Importation and Exportation
The fundamental equivalence (a < b) = a′ + b has many other interesting
consequences. One of the most important of these is the law of importation and
exportation, which is expressed by the following formula:

[a < (b < c)] = (ab < c).

�To say that if a is true b implies c, is to say that a and b imply c�.
This equality involves two converse implications: If we infer the second mem-

ber from the �rst, we import into the implication (b < c) the hypothesis or
condition a; if we infer the �rst member from the second, we, on the contrary,
export from the implication (ab < c) the hypothesis a.

Demonstration:

[a < (b < c)] = a′ + (b < c) = a′ + b′ + c,

(ab < c) = (ab)′ + c = a′ + b′ + c.

Cor. 1.�Obviously we have the equivalence

[a < (b < c)] = [b < (a < c)],

since both members are equal to (ab < c), by the commutative law of multipli-
cation.

Cor. 2.�We have also

[a < (a < b)] = (a < b),

for, by the law of importation and exportation,

[a < (a < b)] = (aa < b) = (a < b).
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If we apply the law of importation to the two following formulas, of which the
�rst results from the principle of identity and the second expresses the principle
of contraposition,

(a < b) < (a < b), (a < b) < (b′ < a′),

we obtain the two formulas

(a < b)a < b), (a < b)b′ < a′,

which are the two types of hypothetical reasoning : �If a implies b, and if a is
true, b is true� (modus ponens); �If a implies b, and if b is false, a is false� (modus
tollens).

Remark. These two formulas could be directly deduced by the principle of
assertion, from the following

(a < b)(a = 1) < (b = 1),
(a < b)(b = 0) < (a = 0),

which are not dependent on the law of importation and which result from the
principle of the syllogism.

From the same fundamental equivalence, we can deduce several paradoxical
formulas:

1. a < (b < a), a′ < (a < b).

�If a is true, a is implied by any proposition b; if a is false, a implies any
proposition b�. This agrees with the known properties of 0 and 1.

2. a < [(a < b) < b], a′ < [(b < a) < b′].

�If a is true, then 'a implies b' implies b; if a is false, then 'b implies a' implies
not-b.�

These two formulas are other forms of hypothetical reasoning (modus ponens
and modus tollens).

3. [(a < b) < a] = a, 59 [(b < a) < a′] = a′,

�To say that, if a implies b, a is true, is the same as a�rming a; to say that,
if b implies a, a is false, is the same as denying a�.

Demonstration:

[(a < b) < a] = (a′ + b < a) = ab′ + a = a,

[(b < a) < a′] = (b′ + a < a′) = a′b + a′ = a′.

59This formula is Bertrand Russell's �principle of reduction�. See The Principles of
Mathematics, Vol. I, p. 17 (Cambridge, 1903).
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In formulas (1) and (3), in which b is any term at all, we might introduce
the sign

∏
with respect to b. In the following formula, it becomes necessary to

make use of this sign.

4.
∏
x

{[a < (b < x)] < x} = ab.

Demonstration:

{[a < (b < x)] < x} = {[a′ + (b < x)] < x}
= [(a′ + b′ + x) < x] = abx′ + x = ab + x.

We must now form the product
∏

x(ab+x), where x can assume every value,
including 0 and 1. Now, it is clear that the part common to all the terms of
the form (ab + x) can only be ab. For, (1) ab is contained in each of the sums
(ab+x) and therefore in the part common to all; (2) the part common to all the
sums (ab + x) must be contained in (ab + 0), that is, in ab. Hence this common
part is equal to ab,60 which proved the theorem.

0.59 Reduction of Inequalities to Equalities
As we have said, the principle of assertion enables us to reduce inequalities to
equalities by means of the following formulas:

(a 6= 0) = (a = 1), (a 6= 1) = (a = 0),
(a 6= b) = (a = b′).

For,
(a 6= b) = (ab′ + a′b + 0) = (ab′ + ab′ = 1) = (a = b′).

Consequently, we have the paradoxical formula

(a 6= b) = (a = b′).

This is easily understood, for, whatever the proposition b, either it is true
and its negative is false, or it is false and its negative is true. Now, whatever
the proposition a may be, it is true or false; hence it is necessarily equal either
to b or to b′. Thus to deny an equality (between propositions) is to a�rm the
opposite equality.

60This argument is general and from it we can deduce the formula
∏
x

(a + x) = a,

whence may be derived the correlative formula
∑

x

ax = a.
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Thence it results that, in the calculus of propositions, we do not need to
take inequalities into consideration�a fact which greatly simpli�es both theory
and practice. Moreover, just as we can combine alternative equalities, we can
also combine simultaneous inequalities, since they are reducible to equalities.

For, from the formulas previously established (�0.57)

(ab = 0) = (a = 0) + (b = 0),
(a + b = 1) = (a = 1) + (b = 1),

we deduce by contraposition

(a 6= 0)(b 6= 0) = (ab 6= 0),
(a 6= 1)(b 6= 1) = (a + b 6= 1).

These two formulas, moreover, according to what we have just said, are
equivalent to the known formulas

(a = 1)(b = 1) = (ab = 1),
(a = 0)(b = 0) = (a + b = 0).

Therefore, in the calculus of propositions, we can solve all simultaneous
systems of equalities or inequalities and all alternative systems of equalities or
inequalities, which is not possible in the calculus of classes. To this end, it is
necessary only to apply the following rule:

First reduce the inclusions to equalities and the non-inclusions to inequali-
ties; then reduce the equalities so that their second members will be 1, and the
inequalities so that their second members will be 0, and transform the latter
into equalities having 1 for a second member; �nally, suppress the second mem-
bers 1 and the signs of equality, i.e., form the product of the �rst members of
the simultaneous equalities and the sum of the �rst members of the alternative
equalities, retaining the parentheses.

0.60 Conclusion
The foregoing exposition is far from being exhaustive; it does not pretend to be
a complete treatise on the algebra of logic, but only undertakes to make known
the elementary principles and theories of that science. The algebra of logic is
an algorithm with laws peculiar to itself. In some phases it is very analogous to
ordinary algebra, and in others it is very widely di�erent. For instance, it does
not recognize the distinction of degrees; the laws of tautology and absorption
introduce into it great simpli�cations by excluding from it numerical coe�cients.
It is a formal calculus which can give rise to all sorts of theories and problems,
and is susceptible of an almost in�nite development.

But at the same time it is a restricted system, and it is important to bear
in mind that it is far from embracing all of logic. Properly speaking, it is only
the algebra of classical logic. Like this logic, it remains con�ned to the domain
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circumscribed by Aristotle, namely, the domain of the relations of inclusion
between concepts and the relations of implication between propositions. It is
true that classical logic (even when shorn of its errors and super�uities) was
much more narrow than the algebra of logic. It is almost entirely contained
within the bounds of the theory of the syllogism whose limits to-day appear
very restricted and arti�cial. Nevertheless, the algebra of logic simply treats,
with much more breadth and universality, problems of the same order; it is at
bottom nothing else than the theory of classes or aggregates considered in their
relations of inclusion or identity. Now logic ought to study many other kinds of
concepts than generic concepts (concepts of classes) and many other relations
than the relation of inclusion (of subsumption) between such concepts. It ought,
in short, to develop into a logic of relations, which Leibniz foresaw, which
Peirce and Schröder founded, and which Peano and Russell seem to
have established on de�nite foundations.

While classical logic and the algebra of logic are of hardly any use to math-
ematics, mathematics, on the other hand, �nds in the logic of relations its
concepts and fundamental principles; the true logic of mathematics is the logic
of relations. The algebra of logic itself arises out of pure logic considered as
a particular mathematical theory, for it rests on principles which have been
implicitly postulated and which are not susceptible of algebraic or symbolic ex-
pression because they are the foundation of all symbolism and of all the logical
calculus.61 Accordingly, we can say that the algebra of logic is a mathematical
logic by its form and by its method, but it must not be mistaken for the logic
of mathematics.

61The principle of deduction and the principle of substitution. See the author's Manuel
de Logistique, Chapter 1, �� 2 and 3 [not published], and Les Principes des Mathématiques,
Chapter 1, A.
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